This commit is contained in:
Thomas von Dein
2020-02-17 19:43:07 +01:00
parent 49500a85b8
commit 9ef5896d67
31 changed files with 1621 additions and 0 deletions

168
2313-avr-only-test/Makefile Executable file
View File

@@ -0,0 +1,168 @@
#-------------------------------------------------------------------------------------------------------
# makefile
#
# written by Steffen from mikrocontrollerspielwiese.de
#
# inspired from Guido Socher's makefile
# http://www.linuxfocus.org/Deutsch/November2004/article352.shtml
#
# license: GPL (http://www.gnu.org/licenses/gpl.txt)
#-------------------------------------------------------------------------------------------------------
AVRDUDE=/usr/local/bin/avrdude
# avr-gcc part name
MCU=attiny2313
# avrdude part name
#PART=t85
PART=t2313
CC=avr-gcc
CPP=avr-c++
ASM=avr-as
#CPP=env -P/usr/local/bin:/usr/bin - avr-c++
#CC=env -P/usr/local/bin:/usr/bin - avr-gcc
OBJCOPY=avr-objcopy
PORT=$(shell ls /dev/ttyACM*)
#-------------------
# Programmieradapter
# hier kannst Du Deinen Programmieradapter angeben, wenn Du einen
# anderen nimmst, als in der Mikrocontrollerspielwiese vorgeschlagen
# Diamex
PROGRAMMER = -c stk500v2 -P $(PORT) -b 9600 -B 10 -v
#der USB-Programmieradapter der Mikrocontrollerspielwiese:
#PROGRAMMER = -c usbasp
#mein Mac-Programmieradapter:
#PROGRAMMER = -c stk500v2 -P /dev/tty.usbmodem431
# CPU Speed
DEFS=-DF_CPU=8000000UL
#
# attiny compatibility layer
#COMPAT=-I/home/scip/devel/at/tiny/cores/tiny
# gloabal defines
#-------------------
# auf Kleinheit optimieren:
CFLAGS=-g -mmcu=$(MCU) -Wall -Wstrict-prototypes -Os -mcall-prologues -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wundef -I. $(COMPAT) $(DEFS)
CPPFLAGS=-g -mmcu=$(MCU) -Wall -Os -mcall-prologues -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wundef -I. $(COMPAT) $(DEFS)
PWD=$(shell pwd)
SRC=$(shell basename $(PWD))
OBJ=$(shell ls *.S *.c *.cpp | sed -e 's/\.S/\.o/' -e 's/\.cpp/.o/' -e 's/\.c/.o/')
#-------------------
all: $(SRC).hex
#-------------------
help:
@echo
@echo "Moegliche Befehle:"
@echo " make all - compiliert Dein Programm und erzeugt die .hex-Datei"
@echo " make load - compiliert Dein Programm und schiebt es in den AVR"
@echo " make clean - loescht die beim Compilieren erzeugten Dateien"
@echo " make rdfuses - gibt Dir Informationen ueber die gesetzten Fusebits und mehr"
@echo " make wrfuse4.8mhz - setzt Fusebit fuer 4.8 MHz intern"
@echo " make wrfuse8.0mhz - set 8MHz fuse intern"
@echo " make wrfuse9.6mhz - setzt Fusebit fuer 9.6 MHz intern"
@echo " make wrfuse128khz - setzt Fusebit fuer 128 kHz intern"
@echo " make wrfusecrystal - setzt Fusebit fuer externen Quarz / Crystal (Achtung!)"
@echo " make wrfusenoreset - setzt Fusebit fuer PB5 (Achtung!)"
@echo " make help - zeigt diesen Hilfetext"
@echo
@echo "Achtung: ohne Quarz hast Du keine Chance wrfusecrystal rueckgaengig zu machen!"
@echo
@echo "Achtung: wrfusenoreset schaltet PB5 frei und deaktiviert RESET !!!"
@echo
#-------------------
$(SRC).hex : $(SRC).out
$(OBJCOPY) -R .eeprom -O ihex $(SRC).out $(SRC).hex
$(SRC).out : $(OBJ)
$(CC) $(CFLAGS) -o $(SRC).out -Wl,-Map,$(SRC).map $(OBJ)
%.o : %.c
$(CC) $(CFLAGS) -Os -c $< -o $@
%.o : %.S
$(CC) $(CFLAGS) -Os -c $< -o $@
%.o : %.cpp
$(CPP) $(CPPFLAGS) -Os -c $< -o $@
#------------------
load: $(SRC).hex
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -e -U flash:w:"$(SRC).hex"
#-------------------
# fuse byte settings attiny13:
#
# Fuse Low Byte = 0x69 (4,8MHz internal), 0x6a (9.6MHz internal)
# Fuse High Byte = 0xff (RESET enabled), 0xfe (PB5 enabled, RESET disabled)
# Factory default is 0x6a / 0xff
# Check this with make rdfuses
rdfuses:
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -v -q
# 2313: internal osci 8Mhz, ena WDT, ena SPI prog
wrfuse8.0mhz:
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U lfuse:w:0x64:m -U hfuse:w:0xcf:m -U efuse:w:0xff:m
# use internal RC oscillator 4.8 MHz
wrfuse4.8mhz:
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U lfuse:w:0x69:m
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U hfuse:w:0xff:m
# use internal RC oscillator 9.6 MHz
wrfuse9.6mhz:
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U lfuse:w:0x6a:m
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U hfuse:w:0xff:m
# use external crystal
wrfusecrystal:
clear
@echo "Warnung: Das Setzen des Quarz-Fusebits kann nur mit Quarz rueckgaengig gemacht werden!"
@echo " Du hast 15 Sekunden, um mit crtl-c abzubrechen."
@echo
@echo "Warning: The external crystal setting can not be changed back without a working crystal"
@echo " You have 15 seconds to abort this with crtl-c"
@sleep 15
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U lfuse:w:0x68:m
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U hfuse:w:0xff:m
# fuse byte setting for using PB5 (disables RESET)
wrfusenoreset:
clear
@echo "Warnung:"
@echo
@echo "Das Setzen des Reset-Fusebits kann nicht rueckgaengig gemacht werden!"
@echo "Du hast 15 Sekunden, um mit crtl-c abzubrechen."
@echo
@sleep 15
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U hfuse:w:0xfe:m
#-------------------
clean:
rm -f *.o *.map *.out *.hex
#-------------------

View File

@@ -0,0 +1,34 @@
#include "analog.h"
#ifdef ADCSRA
int analogRead (uint8_t pin){
int a=1, i=a, j=a;
long int analogwert=0, analogwert1=0, analogwert2=0 ;
while(j){
while(i){
ADCSRA=0x80; // ADC eingeschaltet, kein Prescale
ADMUX=pin;
ADCSRA |=_BV(ADSC); // single conversion mode ein
while (ADCSRA & (1<<ADSC)) {;} // auf Abschluss der Konvertierung warten
analogwert+=ADCW;
i--;
}
analogwert1 = analogwert/a;
analogwert2 += analogwert1;
j--;
}
analogwert=(analogwert2/a);
return (analogwert);
}
#else
#include <stdlib.h>
int analogRead (uint8_t pin) {
// No ADC on this MCU
abort();
}
#endif

View File

@@ -0,0 +1,12 @@
#ifndef ANALOG_H
#define ANALOG_H
/*
* via http://www.sachsendreier.com/msw/projekte/attiny13_analog_bargraph/atiny13_analog_bargraph.html
* Alternative: http://www.mikrocontroller.net/articles/AVR-GCC-Tutorial/Analoge_Ein-_und_Ausgabe#Nutzung_des_ADC
*/
#include <avr/io.h>
int analogRead(uint8_t pin);
#endif

285
2313-avr-only-test/delay.h Normal file
View File

@@ -0,0 +1,285 @@
/*
Copyright (c) 2005, Hans-Juergen Heinrichs
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
/*
* delay_x.h
*
* Accurate delays ranging from a single CPU cycle up to
* more than 500 second (e.g. with 8MHz device):
*
* The idea for the functions below was heavily inspired by the
* file <avr/delay.h> which is part of the excellent WinAVR
* distribution. Therefore, thanks to Marek Michalkiewicz and
* Joerg Wunsch.
*
* The idea is to have the GCC preprocessor handle all calculations
* necessary for determining the exact implementation of a delay
* algorithm. The implementation itself is then inlined into the
* user code.
* In this way it is possible to always get the code size optimized
* delay implementation.
*
* !!======================================================!!
* !! Requires compile time constants for the delay !!
* !! Requires compiler optimization !!
* !!======================================================!!
*
*/
#ifndef _AVR_DELAY_X_H_
#define _AVR_DELAY_X_H_ 1
#include <inttypes.h>
#ifndef F_CPU
# warning "Macro F_CPU must be defined"
#endif
/*
*
* _ d e l a y _ n s (double __ns)
* _ d e l a y _ u s (double __us)
* _ d e l a y _ m s (double __ms)
* _ d e l a y _ s (double __s)
*
* Perform a very exact delay with a resolution as accurate as a
* single CPU clock (the macro F_CPU is supposed to be defined to a
* constant defining the CPU clock frequency in Hertz).
*
*/
#define _delay_ns(__ns) _delay_cycles( (double)(F_CPU)*((double)__ns)/1.0e9 + 0.5 )
#define _delay_us(__us) _delay_cycles( (double)(F_CPU)*((double)__us)/1.0e6 + 0.5 )
#define _delay_ms(__ms) _delay_cycles( (double)(F_CPU)*((double)__ms)/1.0e3 + 0.5 )
#define _delay_s( __s) _delay_cycles( (double)(F_CPU)*((double)__s )/1.0e0 + 0.5 )
/* ==========================================================================*/
/*
* Forward declaration for all functions with attribute
* 'always_inline' enforces GCC to inline the code (even
* if it would be better not to do so from optimization
* perspective).
* Without this attribute GCC is free to implement
* inline code or not (using the keyword 'inline'
* alone is not sufficient).
*
*/
static __inline__ void _NOP1( void) __attribute__((always_inline));
static __inline__ void _NOP2( void) __attribute__((always_inline));
static __inline__ void _NOP3( void) __attribute__((always_inline));
static __inline__ void _NOP4( void) __attribute__((always_inline));
static __inline__ void _NOP5( void) __attribute__((always_inline));
static __inline__ void _NOP6( void) __attribute__((always_inline));
static __inline__ void _NOP7( void) __attribute__((always_inline));
static __inline__ void _NOP8( void) __attribute__((always_inline));
static __inline__ void _NOP9( void) __attribute__((always_inline));
static __inline__ void _NOP10(void) __attribute__((always_inline));
static __inline__ void _NOP11(void) __attribute__((always_inline));
static __inline__ void _NOP12(void) __attribute__((always_inline));
static __inline__ void _delay_loop_3( uint32_t) __attribute__((always_inline));
static __inline__ void _delay_loop_1_x( uint8_t) __attribute__((always_inline));
static __inline__ void _delay_loop_2_x(uint16_t) __attribute__((always_inline));
static __inline__ void _delay_loop_3_x(uint32_t) __attribute__((always_inline));
static __inline__ void _delay_cycles(const double) __attribute__((always_inline));
/*
* _ N O P x ( void )
*
* Code size optimized NOPs - not using any registers
*
* These NOPs will be used for very short delays where
* it is more code efficient than executing loops.
*
*/
static __inline__ void _NOP1 (void) { __asm__ volatile ( "nop " "\n\t" ); }
static __inline__ void _NOP2 (void) { __asm__ volatile ( "rjmp 1f" "\n\t" "1:" "\n\t" ); }
static __inline__ void _NOP3 (void) { __asm__ volatile ( "lpm " "\n\t" ); }
static __inline__ void _NOP4 (void) { _NOP3(); _NOP1(); }
static __inline__ void _NOP5 (void) { _NOP3(); _NOP2(); }
static __inline__ void _NOP6 (void) { _NOP3(); _NOP3(); }
static __inline__ void _NOP7 (void) { _NOP3(); _NOP3(); _NOP1(); }
static __inline__ void _NOP8 (void) { _NOP3(); _NOP3(); _NOP2(); }
static __inline__ void _NOP9 (void) { _NOP3(); _NOP3(); _NOP3(); }
static __inline__ void _NOP10(void) { _NOP3(); _NOP3(); _NOP3(); _NOP1(); }
static __inline__ void _NOP11(void) { _NOP3(); _NOP3(); _NOP3(); _NOP2(); }
static __inline__ void _NOP12(void) { _NOP3(); _NOP3(); _NOP3(); _NOP3(); }
/*
* _ d e l a y _ l o o p _ 3( uint32_t __count )
*
* This delay loop is not used in the code below: It is
* a supplement to the _delay_loop_1() and _delay_loop_2()
* within standard WinAVR <arv/delay.h> giving a wider
* (32 bit) delay range.
*
*/
static __inline__ void
_delay_loop_3( uint32_t __count )
{
__asm__ volatile (
"1: sbiw %A0,1" "\n\t"
"sbc %C0,__zero_reg__" "\n\t"
"sbc %D0,__zero_reg__" "\n\t"
"brne 1b"
: "=w" (__count)
: "0" (__count)
);
}
/*
* _ d e l a y _ l o o p _ 1 _ x( uint8_t __n )
* _ d e l a y _ l o o p _ 2 _ x( uint16_t __n )
* _ d e l a y _ l o o p _ 3 _ x( uint32_t __n )
*
* These delay loops always have exactly 4(8) cycles per loop.
* They use a 8/16/32 bit register counter respectively.
*
*/
static __inline__ void /* exactly 4 cycles/loop, max 2**8 loops */
_delay_loop_1_x( uint8_t __n )
{ /* cycles per loop */
__asm__ volatile ( /* __n..one zero */
"1: dec %0" "\n\t" /* 1 1 */
" breq 2f" "\n\t" /* 1 2 */
"2: brne 1b" "\n\t" /* 2 1 */
: "=r" (__n) /* ----- ----- */
: "0" (__n) /* 4 4 */
);
}
static __inline__ void /* exactly 4 cycles/loop, max 2**16 loops */
_delay_loop_2_x( uint16_t __n )
{ /* cycles per loop */
__asm__ volatile ( /* __n..one zero */
"1: sbiw %0,1" "\n\t" /* 2 2 */
" brne 1b " "\n\t" /* 2 1 */
" nop " "\n\t" /* 1 */
: "=w" (__n) /* ----- ----- */
: "0" (__n) /* 4 4 */
);
}
static __inline__ void /* exactly 8 cycles/loop, max 2**32 loops */
_delay_loop_3_x( uint32_t __n )
{ /* cycles per loop */
__asm__ volatile ( /* __n..one zero */
"1: sbiw %A0,1 " "\n\t" /* 2 2 */
" sbc %C0,__zero_reg__" "\n\t" /* 1 1 */
" sbc %D0,__zero_reg__" "\n\t" /* 1 1 */
" nop " "\n\t" /* 1 1 */
" breq 2f " "\n\t" /* 1 2 */
"2: brne 1b " "\n\t" /* 2 1 */
: "=w" (__n) /* ----- ----- */
: "0" (__n) /* 8 8 */
);
}
/*
*
* _ d e l a y _ c y c l e s (double __ticks_d)
*
* Perform an accurate delay of a given number of processor cycles.
*
* All the floating point arithmetic will be handled by the
* GCC Preprocessor and no floating point code will be generated.
* Allthough the parameter __ticks_d is of type 'double' this
* function can be called with any constant integer value, too.
* GCC will handle the casting appropriately.
*
* With an 8 MHz clock e.g., delays ranging from 125 nanoseconds
* up to (2**32-1) * 125ns ~= 536,87 seconds are feasible.
*
*/
static __inline__ void
_delay_cycles(const double __ticks_d)
{
uint32_t __ticks = (uint32_t)(__ticks_d);
uint32_t __padding;
uint32_t __loops;
/*
* Special optimization for very
* small delays - not using any register.
*/
if( __ticks <= 12 ) { /* this can be done with 4 opcodes */
__padding = __ticks;
/* create a single byte counter */
} else if( __ticks <= 0x400 ) {
__ticks -= 1; /* caller needs 1 cycle to init counter */
__loops = __ticks / 4;
__padding = __ticks % 4;
if( __loops != 0 )
_delay_loop_1_x( (uint8_t)__loops );
/* create a two byte counter */
} else if( __ticks <= 0x40001 ) {
__ticks -= 2; /* caller needs 2 cycles to init counter */
__loops = __ticks / 4;
__padding = __ticks % 4;
if( __loops != 0 )
_delay_loop_2_x( (uint16_t)__loops );
/* create a four byte counter */
} else {
__ticks -= 4; /* caller needs 4 cycles to init counter */
__loops = __ticks / 8;
__padding = __ticks % 8;
if( __loops != 0 )
_delay_loop_3_x( (uint32_t)__loops );
}
if( __padding == 1 ) _NOP1();
if( __padding == 2 ) _NOP2();
if( __padding == 3 ) _NOP3();
if( __padding == 4 ) _NOP4();
if( __padding == 5 ) _NOP5();
if( __padding == 6 ) _NOP6();
if( __padding == 7 ) _NOP7();
if( __padding == 8 ) _NOP8();
if( __padding == 9 ) _NOP9();
if( __padding == 10 ) _NOP10();
if( __padding == 11 ) _NOP11();
if( __padding == 12 ) _NOP12();
}
#endif /* _AVR_DELAY_X_H_ */

View File

@@ -0,0 +1,35 @@
#include "digital.h"
#include <avr/interrupt.h>
void pinMode(uint8_t pin, uint8_t mode) {
uint8_t sreg_local = SREG;
cli();
if(mode) {
DDRB |= _BV(pin);
}
else {
DDRB &= ~_BV(pin);
}
SREG = sreg_local;
}
void digitalWrite(uint8_t pin, uint8_t val) {
uint8_t sreg_local = SREG;
cli();
if(val) {
PORTB |= _BV(pin);
}
else {
PORTB &= ~_BV(pin);
}
SREG = sreg_local;
}
int digitalRead(uint8_t pin) {
if ( PINB & _BV(pin) ) {
return 1;
}
else {
return 0;
}
}

View File

@@ -0,0 +1,16 @@
#ifndef DIGITAL_H
#define DIGITAL_H
#define INPUT 0
#define OUTPUT 1
#define LOW 0
#define HIGH 1
#include <avr/io.h>
void pinMode(uint8_t pin, uint8_t mode);
void digitalWrite(uint8_t pin, uint8_t val);
int digitalRead(uint8_t pin);
#endif

40
2313-avr-only-test/main.c Executable file
View File

@@ -0,0 +1,40 @@
//*************************************************************************
// steffen wrote this stuff for mikrocontrollerspielwiese.de
// have fun!
//*************************************************************************
#include "delay.h"
#include "digital.h"
#include "analog.h"
//#define BAUD_RATE 57600 //115200
//#include "serial.h" // serial Port (TX) defined in serial.S!
#define PU_BAUD_RATE 38400
#include <picoUART.h>
#define LED PB4
void serOut(const char* str) {
prints_P(str);
/*
while (*str)
TxByte(*str++);
*/
}
int main(void){
pinMode(LED, OUTPUT);
while (1) {
serOut("Turning on LED\n");
digitalWrite(LED, HIGH);
_delay_ms(2550);
serOut("Turning off LED\n");
digitalWrite(LED, LOW);
_delay_ms(2550);
}
return 0;
}

View File

@@ -0,0 +1,193 @@
/* optimized half-duplex high-speed AVR serial uart
* Ralph Doncaster 2020 open source MIT license
*
* picoUART is accurate to the cycle (+- 0.5 cycle error)
* 0.64% error at 115.2k/8M and 0.4% error at 115.2k/9.6M
*
* define PU_BAUD_RATE before #include to change default baud rate
*
* capable of single-pin operation (PU_TX = PU_RX) as follows:
* connect MCU pin to host RX line, and a 1.5k-4.7k resistor between
* host RX and TX line. Note this also gives local echo.
*
* 20200123 version 0.5
* 20200123 version 0.6 - improve inline asm
* 20200201 version 0.7 - use push/pull during tx
* 20200203 version 0.8 - add prints_P, prefix globals with PU_
*/
#pragma once
#include <avr/io.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef PU_BAUD_RATE
#define PU_BAUD_RATE 115200L // default baud rate
#endif
#ifndef PU_TX
#define PU_TX D,1
#define PU_RX D,0
#endif
// use static inline functions for type safety
extern inline float PUBIT_CYCLES() {return F_CPU/(PU_BAUD_RATE*1.0);}
// delay based on cycle count of asm code + 0.5 for rounding
extern inline int PUTXWAIT() {return PUBIT_CYCLES() - 7 + 0.5;}
extern inline int PURXWAIT() {return PUBIT_CYCLES() - 5 + 0.5;}
// correct for PURXWAIT skew in PURXSTART calculation
// skew is half of 7 delay intervals between 8 bits
extern inline float PUSKEW() {
return (PUBIT_CYCLES() - (int)(PUBIT_CYCLES() + 0.5)) * 3.5;
}
// Time from falling edge of start bit to sample 1st bit is 1.5 *
// bit-time. Subtract 2 cycles for sbic, 1 for lsr, and PURXWAIT.
// Subtract 1.5 cycles because start bit detection is accurate to
// +-1.5 cycles. Add 0.5 cycles for int rounding, and add skew.
extern inline int PURXSTART() {
return (PUBIT_CYCLES()*1.5 -3 -PURXWAIT() -1 +PUSKEW());
}
// min rx/tx turn-around time in resistor-only 1-wire mode
inline void pu_rxtx_wait()
{
__builtin_avr_delay_cycles(PUBIT_CYCLES()*1.5);
}
// I/O register macros
#define BIT(r,b) (b)
#define PORT(r,b) (PORT ## r)
#define DDR(r,b) (DDR ## r)
#define PIN(r,b) (PIN ## r)
#define bit(io) BIT(io)
#define port(io) PORT(io)
#define ddr(io) DDR(io)
#define pin(io) PIN(io)
// use up registers so only r25:r24 are free for the compiler
#define alloc_regs()\
register int dummy1 asm("r20");\
asm volatile ("" : "=r" (dummy1));\
register int dummy2 asm("r26");\
asm volatile ("" : "=r" (dummy2));\
register int dummy3 asm("r30");\
asm volatile ("" : "=r" (dummy3));
#define touch_regs()\
asm volatile ("" :: "r" (dummy1));\
asm volatile ("" :: "r" (dummy2));\
asm volatile ("" :: "r" (dummy3));
__attribute((naked))
void _pu_tx()
{
alloc_regs();
register char c asm("r18");
register char sr asm("r19");
asm volatile (
"cbi %[tx_port], %[tx_bit]\n" // disable pullup
"cli\n"
"sbi %[tx_port]-1, %[tx_bit]\n" // start bit
"in r0, %[tx_port]\n" // save DDR in r0
"ldi %[sr], 3\n" // stop bit & idle state
"Ltxbit:\n"
: [c] "+r" (c),
[sr] "+r" (sr)
: [tx_port] "I" (_SFR_IO_ADDR(port(PU_TX))),
[tx_bit] "I" (bit(PU_TX))
);
__builtin_avr_delay_cycles(PUTXWAIT());
// 7 cycle loop
asm volatile (
"bst %[c], 0\n" // store lsb in T
"bld r0, %[tx_bit]\n"
"lsr %[sr]\n" // 2-byte shift register
"ror %[c]\n" // shift for next bit
"out %[tx_port], r0\n"
"brne Ltxbit\n"
"cbi %[tx_port]-1, %[tx_bit]\n" // set to input mode
"reti\n" // return & enable interrupts
: [c] "+r" (c),
[sr] "+r" (sr)
: [tx_port] "I" (_SFR_IO_ADDR(port(PU_TX))),
[tx_bit] "I" (bit(PU_TX))
);
touch_regs();
}
inline void pu_tx(char c)
{
register char ch asm("r18") = c;
asm volatile ("%~call %x1" : "+r"(ch) : "i"(_pu_tx) : "r19", "r24", "r25");
}
inline void prints_P(const char* s)
{
register char c asm("r18");
asm volatile (
"1:\n"
"lpm %[c], %a0+\n" // read next char
"tst %[c]\n"
"breq 1f\n"
"%~call %x2\n"
"rjmp 1b\n"
"1:\n"
: "+e" (s), [c] "+r" (c)
: "i" (_pu_tx)
: "r19", "r24", "r25"
);
}
__attribute((naked))
void _pu_rx()
{
alloc_regs();
register char c asm("r18");
register char dummy4 asm("r19");
asm volatile (
// wait for idle state (high)
"1: sbis %[rx_pin], %[rx_bit]\n"
"rjmp 1b\n"
"ldi %[c], 0x80\n" // bit shift counter
"cli\n"
// wait for start bit (low)
"1: sbic %[rx_pin], %[rx_bit]\n"
"rjmp 1b\n"
: [c] "=d" (c)
: [rx_pin] "I" (_SFR_IO_ADDR(pin(PU_RX))),
[rx_bit] "I" (bit(PU_RX))
);
__builtin_avr_delay_cycles(PURXSTART());
asm volatile ("Lrxbit:");
__builtin_avr_delay_cycles(PURXWAIT());
// 5 cycle loop
asm volatile (
"lsr %[c]\n"
"sbic %[rx_pin], %[rx_bit]\n"
"ori %[c], 0x80\n"
"brcc Lrxbit\n"
"reti\n"
: [c] "+d" (c)
: [rx_pin] "I" (_SFR_IO_ADDR(pin(PU_RX))),
[rx_bit] "I" (bit(PU_RX)),
"r" (dummy4)
);
touch_regs();
}
inline char pu_rx()
{
register char c asm("r18");
asm ("%~call %x1" : "=r"(c) : "i"(_pu_rx) : "r24", "r25");
return c;
}
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -0,0 +1,44 @@
;; via http://nerdralph.blogspot.com/2013/12/writing-avr-assembler-code-with-arduino.html
/* Optimized AVR305 half-duplex serial uart implementation
* timing for 81N, 115.2kbps @8Mhz = 69.4 cycles/bit
* and @16Mhz = 138.9 cycles/bit
* @author: Ralph Doncaster
* @version: $Id$
*/
#include <avr/io.h>
; correct for avr/io.h 0x20 port offset for io instructions
#define UART_Port (PORTB-0x20)
#define UART_Tx 0
#define bitcnt r18
#define delayArg 19
.global TxTimedByte
; transmit byte in r24 with bit delay in r22 - 15 instructions
; calling code must set Tx line to idle state (high) or 1st byte may be lost
; i.e. PORTB |= (1<<UART_Tx)
; each loop takes 10 cycles on a standard AVR
TxTimedByte:
cli
sbi UART_Port-1, UART_Tx ; set Tx line to output
ldi bitcnt, 10 ; 1 start + 8 bit + 1 stop
com r24 ; invert and set carry
TxLoop:
; 9 cycle loop + delay
brcc tx1
cbi UART_Port, UART_Tx ; transmit a 0
tx1:
brcs TxDone
sbi UART_Port, UART_Tx ; transmit a 1
TxDone:
mov delayArg, r22
TxDelay:
; delay (3 cycle * delayArg) -1
dec delayArg
brne TxDelay
lsr r24
dec bitcnt
brne TxLoop
reti ; return and enable interrupts

View File

@@ -0,0 +1,23 @@
/* Optimized AVR305 half-duplex serial uart implementation
* timing for 81N, 115.2kbps @8Mhz = 69.4 cycles/bit
* and @16Mhz = 138.9 cycles/bit
* @author: Ralph Doncaster
* @version: $Id$
*/
#ifdef F_CPU
#define TXDELAY (((F_CPU/BAUD_RATE)-9)/3)
#else
#error CPU frequency F_CPU undefined
#endif
#if TXDELAY > 255
#error low baud rates unsupported - use higher BAUD_RATE
#endif
void TxTimedByte(char, char);
#define TxByte(C) TxTimedByte(C , TXDELAY)

View File

@@ -0,0 +1,24 @@
/* -*-c++-*-
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
This example code is in the public domain.
*/
void setup() {
// initialize the digital pin as an output.
// Pin 13 has an LED connected on most Arduino boards:
Serial.begin(9600);
Serial.print("Press any key: ");
pinMode(PB0, OUTPUT);
}
void loop() {
digitalWrite(13, HIGH); // set the LED on
delay(1000); // wait for a second
digitalWrite(13, LOW); // set the LED off
delay(1000); // wait for a second
if (Serial.available()) {
Serial.println("blinked\n");
}
}

View File

@@ -0,0 +1,33 @@
# Arduino Make file. Refer to https://github.com/sudar/Arduino-Makefile
# Arduino stuff
PROJECT_DIR = $(shell pwd)
BOARD_TAG = attinyx313
BOARD_SUB = 2313
ARDUINO_DIR = /usr/local/arduino
ARDMK_DIR = /usr/local/arduino/Arduino-Makefile
MONITOR_PORT = /dev/ttyACM0
ISP_PORT = /dev/ttyACM0
AVRDUDE = /usr/local/bin/avrdude
ARDUINO_LIBS =
ARDUINO_SKETCHBOOK = .
# mk stuff
ALTERNATE_CORE = ATTinyCore
F_CPU = 8000000L
MONITOR_BAUDRATE = 115200
AVRDUDE_ARD_PROGRAMMER = stk500v2
AVRDUDE_ARD_BAUDRATE = 9600
AVR_TOOLS_DIR = /usr/local/avr
AVRDUDE_CONF = /usr/local/etc/avrdude.conf
# compiler stuff
CFLAGS_STD = -std=gnu11
CXXFLAGS_STD = -std=gnu++11
CXXFLAGS += -pedantic -Wall -Wextra
CURRENT_DIR = $(shell pwd)
# keep this!
include $(ARDMK_DIR)/Arduino.mk

1
2313-tinycore-test/hardware Symbolic link
View File

@@ -0,0 +1 @@
/usr/local/arduino/hardware

View File

@@ -0,0 +1,24 @@
/* -*-c++-*-
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
This example code is in the public domain.
*/
void setup() {
// initialize the digital pin as an output.
// Pin 13 has an LED connected on most Arduino boards:
Serial.begin(9600);
Serial.print("Press any key: ");
pinMode(PB0, OUTPUT);
}
void loop() {
digitalWrite(13, HIGH); // set the LED on
delay(1000); // wait for a second
digitalWrite(13, LOW); // set the LED off
delay(1000); // wait for a second
if (Serial.available()) {
Serial.println("blinked\n");
}
}

View File

@@ -0,0 +1,47 @@
# Arduino Make file. Refer to https://github.com/sudar/Arduino-Makefile
# attiny841:
# BOARD_TAG = attinyx41
# BOARD_SUB = 841
# attiny861:
# BOARD_TAG = attinyx61
# BOARD_SUB = 861
# attiny85:
# BOARD_TAG = attinyx5
# BOARD_SUB = 85
# attiny84:
# BOARD_TAG = attinyx4
# BOARD_SUB = 84
# Arduino stuff
PROJECT_DIR = $(shell pwd)
BOARD_TAG = attinyx41
BOARD_SUB = 841
ARDUINO_DIR = /usr/local/arduino
ARDMK_DIR = /usr/local/arduino/Arduino-Makefile
MONITOR_PORT = /dev/ttyACM0
ISP_PORT = /dev/ttyACM0
AVRDUDE = /usr/local/bin/avrdude
#ARDUINO_LIB_PATH = $(ARDUINO_DIR)/hardware/ATTinyCore/avr/libraries
ARDUINO_LIBS = #Wire SPI GFX SSD1306 # SPI
ARDUINO_SKETCHBOOK = .
# mk stuff
ALTERNATE_CORE = ATTinyCore
F_CPU = 8000000L
MONITOR_BAUDRATE = 115200
AVRDUDE_ARD_PROGRAMMER = stk500v2
AVRDUDE_ARD_BAUDRATE = 9600
AVR_TOOLS_DIR = /usr/local/avr
AVRDUDE_CONF = /usr/local/etc/avrdude.conf
# compiler stuff
CFLAGS_STD = -std=gnu11
CXXFLAGS_STD = -std=gnu++11
CXXFLAGS += -pedantic -Wall -Wextra
CURRENT_DIR = $(shell pwd)
# keep this!
include $(ARDMK_DIR)/Arduino.mk

1
841-tinycore-test/hardware Symbolic link
View File

@@ -0,0 +1 @@
/usr/local/arduino/hardware

View File

@@ -0,0 +1 @@
/usr/local/esp32/arduino-core/libraries/GFX

View File

@@ -0,0 +1 @@
/usr/local/arduino/hardware/ATTinyCore/avr/libraries/SPI

View File

@@ -0,0 +1 @@
/usr/local/esp32/arduino-core/libraries/SSD1306

View File

@@ -0,0 +1 @@
/usr/local/esp32/arduino-core/libraries/TinyWireM

View File

@@ -0,0 +1 @@
/usr/local/arduino/hardware/ATTinyCore/avr/libraries/Wire

156
85-avr-only-test/Makefile Executable file
View File

@@ -0,0 +1,156 @@
#-------------------------------------------------------------------------------------------------------
# makefile
#
# written by Steffen from mikrocontrollerspielwiese.de
#
# inspired from Guido Socher's makefile
# http://www.linuxfocus.org/Deutsch/November2004/article352.shtml
#
# license: GPL (http://www.gnu.org/licenses/gpl.txt)
#-------------------------------------------------------------------------------------------------------
AVRDUDE=/usr/local/bin/avrdude
# avr-gcc part name
MCU=attiny85
# avrdude part name
PART=t85
CC=avr-gcc
CPP=avr-c++
#CPP=env -P/usr/local/bin:/usr/bin - avr-c++
#CC=env -P/usr/local/bin:/usr/bin - avr-gcc
OBJCOPY=avr-objcopy
PORT=$(shell ls /dev/ttyACM*)
#-------------------
# Programmieradapter
# hier kannst Du Deinen Programmieradapter angeben, wenn Du einen
# anderen nimmst, als in der Mikrocontrollerspielwiese vorgeschlagen
# Diamex
PROGRAMMER = -c stk500v2 -P $(PORT) -b 9600 -B 1 -v
#der USB-Programmieradapter der Mikrocontrollerspielwiese:
#PROGRAMMER = -c usbasp
#mein Mac-Programmieradapter:
#PROGRAMMER = -c stk500v2 -P /dev/tty.usbmodem431
#
# attiny compatibility layer
#COMPAT=-I/home/scip/devel/at/tiny/cores/tiny
# gloabal defines
DEFS=-DF_CPU=1000000UL
#-------------------
# auf Kleinheit optimieren:
CFLAGS=-g -mmcu=$(MCU) -Wall -Wstrict-prototypes -Os -mcall-prologues -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wundef -I. $(COMPAT) $(DEFS)
CPPFLAGS=-g -mmcu=$(MCU) -Wall -Os -mcall-prologues -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wundef -I. $(COMPAT) $(DEFS)
PWD=$(shell pwd)
SRC=$(shell basename $(PWD))
OBJ=$(shell ls *.c *.cpp | sed -e 's/\.cpp/.o/' -e 's/\.c/.o/')
#-------------------
all: $(SRC).hex
#-------------------
help:
@echo
@echo "Moegliche Befehle:"
@echo " make all - compiliert Dein Programm und erzeugt die .hex-Datei"
@echo " make load - compiliert Dein Programm und schiebt es in den AVR"
@echo " make clean - loescht die beim Compilieren erzeugten Dateien"
@echo " make rdfuses - gibt Dir Informationen ueber die gesetzten Fusebits und mehr"
@echo " make wrfuse4.8mhz - setzt Fusebit fuer 4.8 MHz intern"
@echo " make wrfuse9.6mhz - setzt Fusebit fuer 9.6 MHz intern"
@echo " make wrfuse128khz - setzt Fusebit fuer 128 kHz intern"
@echo " make wrfusecrystal - setzt Fusebit fuer externen Quarz / Crystal (Achtung!)"
@echo " make wrfusenoreset - setzt Fusebit fuer PB5 (Achtung!)"
@echo " make help - zeigt diesen Hilfetext"
@echo
@echo "Achtung: ohne Quarz hast Du keine Chance wrfusecrystal rueckgaengig zu machen!"
@echo
@echo "Achtung: wrfusenoreset schaltet PB5 frei und deaktiviert RESET !!!"
@echo
#-------------------
$(SRC).hex : $(SRC).out
$(OBJCOPY) -R .eeprom -O ihex $(SRC).out $(SRC).hex
$(SRC).out : $(OBJ)
$(CC) $(CFLAGS) -o $(SRC).out -Wl,-Map,$(SRC).map $(OBJ)
%.o : %.c
$(CC) $(CFLAGS) -Os -c $< -o $@
%.o : %.cpp
$(CPP) $(CPPFLAGS) -Os -c $< -o $@
#------------------
load: $(SRC).hex
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -e -U flash:w:"$(SRC).hex"
#-------------------
# fuse byte settings attiny13:
#
# Fuse Low Byte = 0x69 (4,8MHz internal), 0x6a (9.6MHz internal)
# Fuse High Byte = 0xff (RESET enabled), 0xfe (PB5 enabled, RESET disabled)
# Factory default is 0x6a / 0xff
# Check this with make rdfuses
rdfuses:
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -v -q
# use internal RC oscillator 4.8 MHz
wrfuse4.8mhz:
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U lfuse:w:0x69:m
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U hfuse:w:0xff:m
# use internal RC oscillator 9.6 MHz
wrfuse9.6mhz:
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U lfuse:w:0x6a:m
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U hfuse:w:0xff:m
# use external crystal
wrfusecrystal:
clear
@echo "Warnung: Das Setzen des Quarz-Fusebits kann nur mit Quarz rueckgaengig gemacht werden!"
@echo " Du hast 15 Sekunden, um mit crtl-c abzubrechen."
@echo
@echo "Warning: The external crystal setting can not be changed back without a working crystal"
@echo " You have 15 seconds to abort this with crtl-c"
@sleep 15
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U lfuse:w:0x68:m
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U hfuse:w:0xff:m
# fuse byte setting for using PB5 (disables RESET)
wrfusenoreset:
clear
@echo "Warnung:"
@echo
@echo "Das Setzen des Reset-Fusebits kann nicht rueckgaengig gemacht werden!"
@echo "Du hast 15 Sekunden, um mit crtl-c abzubrechen."
@echo
@sleep 15
$(AVRDUDE) -p $(PART) $(PROGRAMMER) -u -v -U hfuse:w:0xfe:m
#-------------------
clean:
rm -f *.o *.map *.out *.hex
#-------------------

34
85-avr-only-test/analog.c Normal file
View File

@@ -0,0 +1,34 @@
#include "analog.h"
#ifdef ADCSRA
int analogRead (uint8_t pin){
int a=1, i=a, j=a;
long int analogwert=0, analogwert1=0, analogwert2=0 ;
while(j){
while(i){
ADCSRA=0x80; // ADC eingeschaltet, kein Prescale
ADMUX=pin;
ADCSRA |=_BV(ADSC); // single conversion mode ein
while (ADCSRA & (1<<ADSC)) {;} // auf Abschluss der Konvertierung warten
analogwert+=ADCW;
i--;
}
analogwert1 = analogwert/a;
analogwert2 += analogwert1;
j--;
}
analogwert=(analogwert2/a);
return (analogwert);
}
#else
#include <stdlib.h>
int analogRead (uint8_t pin) {
// No ADC on this MCU
abort();
}
#endif

12
85-avr-only-test/analog.h Normal file
View File

@@ -0,0 +1,12 @@
#ifndef ANALOG_H
#define ANALOG_H
/*
* via http://www.sachsendreier.com/msw/projekte/attiny13_analog_bargraph/atiny13_analog_bargraph.html
* Alternative: http://www.mikrocontroller.net/articles/AVR-GCC-Tutorial/Analoge_Ein-_und_Ausgabe#Nutzung_des_ADC
*/
#include <avr/io.h>
int analogRead(uint8_t pin);
#endif

285
85-avr-only-test/delay.h Normal file
View File

@@ -0,0 +1,285 @@
/*
Copyright (c) 2005, Hans-Juergen Heinrichs
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
/*
* delay_x.h
*
* Accurate delays ranging from a single CPU cycle up to
* more than 500 second (e.g. with 8MHz device):
*
* The idea for the functions below was heavily inspired by the
* file <avr/delay.h> which is part of the excellent WinAVR
* distribution. Therefore, thanks to Marek Michalkiewicz and
* Joerg Wunsch.
*
* The idea is to have the GCC preprocessor handle all calculations
* necessary for determining the exact implementation of a delay
* algorithm. The implementation itself is then inlined into the
* user code.
* In this way it is possible to always get the code size optimized
* delay implementation.
*
* !!======================================================!!
* !! Requires compile time constants for the delay !!
* !! Requires compiler optimization !!
* !!======================================================!!
*
*/
#ifndef _AVR_DELAY_X_H_
#define _AVR_DELAY_X_H_ 1
#include <inttypes.h>
#ifndef F_CPU
# warning "Macro F_CPU must be defined"
#endif
/*
*
* _ d e l a y _ n s (double __ns)
* _ d e l a y _ u s (double __us)
* _ d e l a y _ m s (double __ms)
* _ d e l a y _ s (double __s)
*
* Perform a very exact delay with a resolution as accurate as a
* single CPU clock (the macro F_CPU is supposed to be defined to a
* constant defining the CPU clock frequency in Hertz).
*
*/
#define _delay_ns(__ns) _delay_cycles( (double)(F_CPU)*((double)__ns)/1.0e9 + 0.5 )
#define _delay_us(__us) _delay_cycles( (double)(F_CPU)*((double)__us)/1.0e6 + 0.5 )
#define _delay_ms(__ms) _delay_cycles( (double)(F_CPU)*((double)__ms)/1.0e3 + 0.5 )
#define _delay_s( __s) _delay_cycles( (double)(F_CPU)*((double)__s )/1.0e0 + 0.5 )
/* ==========================================================================*/
/*
* Forward declaration for all functions with attribute
* 'always_inline' enforces GCC to inline the code (even
* if it would be better not to do so from optimization
* perspective).
* Without this attribute GCC is free to implement
* inline code or not (using the keyword 'inline'
* alone is not sufficient).
*
*/
static __inline__ void _NOP1( void) __attribute__((always_inline));
static __inline__ void _NOP2( void) __attribute__((always_inline));
static __inline__ void _NOP3( void) __attribute__((always_inline));
static __inline__ void _NOP4( void) __attribute__((always_inline));
static __inline__ void _NOP5( void) __attribute__((always_inline));
static __inline__ void _NOP6( void) __attribute__((always_inline));
static __inline__ void _NOP7( void) __attribute__((always_inline));
static __inline__ void _NOP8( void) __attribute__((always_inline));
static __inline__ void _NOP9( void) __attribute__((always_inline));
static __inline__ void _NOP10(void) __attribute__((always_inline));
static __inline__ void _NOP11(void) __attribute__((always_inline));
static __inline__ void _NOP12(void) __attribute__((always_inline));
static __inline__ void _delay_loop_3( uint32_t) __attribute__((always_inline));
static __inline__ void _delay_loop_1_x( uint8_t) __attribute__((always_inline));
static __inline__ void _delay_loop_2_x(uint16_t) __attribute__((always_inline));
static __inline__ void _delay_loop_3_x(uint32_t) __attribute__((always_inline));
static __inline__ void _delay_cycles(const double) __attribute__((always_inline));
/*
* _ N O P x ( void )
*
* Code size optimized NOPs - not using any registers
*
* These NOPs will be used for very short delays where
* it is more code efficient than executing loops.
*
*/
static __inline__ void _NOP1 (void) { __asm__ volatile ( "nop " "\n\t" ); }
static __inline__ void _NOP2 (void) { __asm__ volatile ( "rjmp 1f" "\n\t" "1:" "\n\t" ); }
static __inline__ void _NOP3 (void) { __asm__ volatile ( "lpm " "\n\t" ); }
static __inline__ void _NOP4 (void) { _NOP3(); _NOP1(); }
static __inline__ void _NOP5 (void) { _NOP3(); _NOP2(); }
static __inline__ void _NOP6 (void) { _NOP3(); _NOP3(); }
static __inline__ void _NOP7 (void) { _NOP3(); _NOP3(); _NOP1(); }
static __inline__ void _NOP8 (void) { _NOP3(); _NOP3(); _NOP2(); }
static __inline__ void _NOP9 (void) { _NOP3(); _NOP3(); _NOP3(); }
static __inline__ void _NOP10(void) { _NOP3(); _NOP3(); _NOP3(); _NOP1(); }
static __inline__ void _NOP11(void) { _NOP3(); _NOP3(); _NOP3(); _NOP2(); }
static __inline__ void _NOP12(void) { _NOP3(); _NOP3(); _NOP3(); _NOP3(); }
/*
* _ d e l a y _ l o o p _ 3( uint32_t __count )
*
* This delay loop is not used in the code below: It is
* a supplement to the _delay_loop_1() and _delay_loop_2()
* within standard WinAVR <arv/delay.h> giving a wider
* (32 bit) delay range.
*
*/
static __inline__ void
_delay_loop_3( uint32_t __count )
{
__asm__ volatile (
"1: sbiw %A0,1" "\n\t"
"sbc %C0,__zero_reg__" "\n\t"
"sbc %D0,__zero_reg__" "\n\t"
"brne 1b"
: "=w" (__count)
: "0" (__count)
);
}
/*
* _ d e l a y _ l o o p _ 1 _ x( uint8_t __n )
* _ d e l a y _ l o o p _ 2 _ x( uint16_t __n )
* _ d e l a y _ l o o p _ 3 _ x( uint32_t __n )
*
* These delay loops always have exactly 4(8) cycles per loop.
* They use a 8/16/32 bit register counter respectively.
*
*/
static __inline__ void /* exactly 4 cycles/loop, max 2**8 loops */
_delay_loop_1_x( uint8_t __n )
{ /* cycles per loop */
__asm__ volatile ( /* __n..one zero */
"1: dec %0" "\n\t" /* 1 1 */
" breq 2f" "\n\t" /* 1 2 */
"2: brne 1b" "\n\t" /* 2 1 */
: "=r" (__n) /* ----- ----- */
: "0" (__n) /* 4 4 */
);
}
static __inline__ void /* exactly 4 cycles/loop, max 2**16 loops */
_delay_loop_2_x( uint16_t __n )
{ /* cycles per loop */
__asm__ volatile ( /* __n..one zero */
"1: sbiw %0,1" "\n\t" /* 2 2 */
" brne 1b " "\n\t" /* 2 1 */
" nop " "\n\t" /* 1 */
: "=w" (__n) /* ----- ----- */
: "0" (__n) /* 4 4 */
);
}
static __inline__ void /* exactly 8 cycles/loop, max 2**32 loops */
_delay_loop_3_x( uint32_t __n )
{ /* cycles per loop */
__asm__ volatile ( /* __n..one zero */
"1: sbiw %A0,1 " "\n\t" /* 2 2 */
" sbc %C0,__zero_reg__" "\n\t" /* 1 1 */
" sbc %D0,__zero_reg__" "\n\t" /* 1 1 */
" nop " "\n\t" /* 1 1 */
" breq 2f " "\n\t" /* 1 2 */
"2: brne 1b " "\n\t" /* 2 1 */
: "=w" (__n) /* ----- ----- */
: "0" (__n) /* 8 8 */
);
}
/*
*
* _ d e l a y _ c y c l e s (double __ticks_d)
*
* Perform an accurate delay of a given number of processor cycles.
*
* All the floating point arithmetic will be handled by the
* GCC Preprocessor and no floating point code will be generated.
* Allthough the parameter __ticks_d is of type 'double' this
* function can be called with any constant integer value, too.
* GCC will handle the casting appropriately.
*
* With an 8 MHz clock e.g., delays ranging from 125 nanoseconds
* up to (2**32-1) * 125ns ~= 536,87 seconds are feasible.
*
*/
static __inline__ void
_delay_cycles(const double __ticks_d)
{
uint32_t __ticks = (uint32_t)(__ticks_d);
uint32_t __padding;
uint32_t __loops;
/*
* Special optimization for very
* small delays - not using any register.
*/
if( __ticks <= 12 ) { /* this can be done with 4 opcodes */
__padding = __ticks;
/* create a single byte counter */
} else if( __ticks <= 0x400 ) {
__ticks -= 1; /* caller needs 1 cycle to init counter */
__loops = __ticks / 4;
__padding = __ticks % 4;
if( __loops != 0 )
_delay_loop_1_x( (uint8_t)__loops );
/* create a two byte counter */
} else if( __ticks <= 0x40001 ) {
__ticks -= 2; /* caller needs 2 cycles to init counter */
__loops = __ticks / 4;
__padding = __ticks % 4;
if( __loops != 0 )
_delay_loop_2_x( (uint16_t)__loops );
/* create a four byte counter */
} else {
__ticks -= 4; /* caller needs 4 cycles to init counter */
__loops = __ticks / 8;
__padding = __ticks % 8;
if( __loops != 0 )
_delay_loop_3_x( (uint32_t)__loops );
}
if( __padding == 1 ) _NOP1();
if( __padding == 2 ) _NOP2();
if( __padding == 3 ) _NOP3();
if( __padding == 4 ) _NOP4();
if( __padding == 5 ) _NOP5();
if( __padding == 6 ) _NOP6();
if( __padding == 7 ) _NOP7();
if( __padding == 8 ) _NOP8();
if( __padding == 9 ) _NOP9();
if( __padding == 10 ) _NOP10();
if( __padding == 11 ) _NOP11();
if( __padding == 12 ) _NOP12();
}
#endif /* _AVR_DELAY_X_H_ */

View File

@@ -0,0 +1,35 @@
#include "digital.h"
#include <avr/interrupt.h>
void pinMode(uint8_t pin, uint8_t mode) {
uint8_t sreg_local = SREG;
cli();
if(mode) {
DDRB |= _BV(pin);
}
else {
DDRB &= ~_BV(pin);
}
SREG = sreg_local;
}
void digitalWrite(uint8_t pin, uint8_t val) {
uint8_t sreg_local = SREG;
cli();
if(val) {
PORTB |= _BV(pin);
}
else {
PORTB &= ~_BV(pin);
}
SREG = sreg_local;
}
int digitalRead(uint8_t pin) {
if ( PINB & _BV(pin) ) {
return 1;
}
else {
return 0;
}
}

View File

@@ -0,0 +1,16 @@
#ifndef DIGITAL_H
#define DIGITAL_H
#define INPUT 0
#define OUTPUT 1
#define LOW 0
#define HIGH 1
#include <avr/io.h>
void pinMode(uint8_t pin, uint8_t mode);
void digitalWrite(uint8_t pin, uint8_t val);
int digitalRead(uint8_t pin);
#endif

26
85-avr-only-test/main.c Executable file
View File

@@ -0,0 +1,26 @@
//*************************************************************************
// steffen wrote this stuff for mikrocontrollerspielwiese.de
// have fun!
//*************************************************************************
#include "delay.h"
#include "digital.h"
#include "analog.h"
#define LED 1
int main(void){
pinMode(LED, OUTPUT);
while (1) {
digitalWrite(LED, HIGH);
_delay_ms(255);
digitalWrite(LED, LOW);
_delay_ms(255);
}
return 0;
}

View File

@@ -0,0 +1,24 @@
/* -*-c++-*-
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
This example code is in the public domain.
*/
void setup() {
// initialize the digital pin as an output.
// Pin 13 has an LED connected on most Arduino boards:
Serial.begin(9600);
Serial.print("Press any key: ");
pinMode(PB0, OUTPUT);
}
void loop() {
digitalWrite(13, HIGH); // set the LED on
delay(1000); // wait for a second
digitalWrite(13, LOW); // set the LED off
delay(1000); // wait for a second
if (Serial.available()) {
Serial.println("blinked\n");
}
}

47
85-tinycore-test/Makefile Normal file
View File

@@ -0,0 +1,47 @@
# Arduino Make file. Refer to https://github.com/sudar/Arduino-Makefile
# attiny841:
# BOARD_TAG = attinyx41
# BOARD_SUB = 841
# attiny861:
# BOARD_TAG = attinyx61
# BOARD_SUB = 861
# attiny85:
# BOARD_TAG = attinyx5
# BOARD_SUB = 85
# attiny84:
# BOARD_TAG = attinyx4
# BOARD_SUB = 84
# Arduino stuff
PROJECT_DIR = $(shell pwd)
BOARD_TAG = attinyx61
BOARD_SUB = 861
ARDUINO_DIR = /usr/local/arduino
ARDMK_DIR = /usr/local/arduino/Arduino-Makefile
MONITOR_PORT = /dev/ttyACM0
ISP_PORT = /dev/ttyACM0
AVRDUDE = /usr/local/bin/avrdude
ARDUINO_LIB_PATH = $(ARDUINO_DIR)/hardware/ATTinyCore/avr/libraries
ARDUINO_LIBS =
ARDUINO_SKETCHBOOK = .
# mk stuff
ALTERNATE_CORE = ATTinyCore
F_CPU = 8000000L
MONITOR_BAUDRATE = 115200
AVRDUDE_ARD_PROGRAMMER = stk500v2
AVRDUDE_ARD_BAUDRATE = 9600
AVR_TOOLS_DIR = /usr/local/avr
AVRDUDE_CONF = /usr/local/etc/avrdude.conf
# compiler stuff
CFLAGS_STD = -std=gnu11
CXXFLAGS_STD = -std=gnu++11
CXXFLAGS += -pedantic -Wall -Wextra
CURRENT_DIR = $(shell pwd)
# keep this!
include $(ARDMK_DIR)/Arduino.mk

1
85-tinycore-test/hardware Symbolic link
View File

@@ -0,0 +1 @@
/usr/local/arduino/hardware