refactored everything, now using scenes, that way I can add UI stuff

This commit is contained in:
2024-05-26 12:29:43 +02:00
parent c8d1faf476
commit 2c246e9e4a
6 changed files with 759 additions and 644 deletions

98
config.go Normal file
View File

@@ -0,0 +1,98 @@
package main
import (
"fmt"
"log"
"os"
"github.com/spf13/pflag"
"github.com/tlinden/golsky/rle"
)
type Config struct {
Width, Height, Cellsize, Density int // measurements
ScreenWidth, ScreenHeight int
TPG int // ticks per generation/game speed, 1==max
Debug, Empty, Invert, Paused bool // game modi
ShowEvolution, NoGrid, RunOneStep bool // flags
Rule *Rule // which rule to use, default: B3/S23
RLE *rle.RLE // loaded GOL pattern from RLE file
Statefile string // load game state from it if non-nil
StateGrid *Grid // a grid from a statefile
Wrap bool // wether wraparound mode is in place or not
}
func ParseCommandline() *Config {
config := Config{}
showversion := false
var rule string
var rlefile string
// commandline params, most configure directly config flags
pflag.IntVarP(&config.Width, "width", "W", 40, "grid width in cells")
pflag.IntVarP(&config.Height, "height", "H", 40, "grid height in cells")
pflag.IntVarP(&config.Cellsize, "cellsize", "c", 8, "cell size in pixels")
pflag.IntVarP(&config.Density, "density", "D", 10, "density of random cells")
pflag.IntVarP(&config.TPG, "ticks-per-generation", "t", 10,
"game speed: the higher the slower (default: 10)")
pflag.StringVarP(&rule, "rule", "r", "B3/S23", "game rule")
pflag.StringVarP(&rlefile, "rle-file", "f", "", "RLE pattern file")
pflag.StringVarP(&config.Statefile, "load-state-file", "l", "", "game state file")
pflag.BoolVarP(&showversion, "version", "v", false, "show version")
pflag.BoolVarP(&config.Paused, "paused", "p", false, "do not start simulation (use space to start)")
pflag.BoolVarP(&config.Debug, "debug", "d", false, "show debug info")
pflag.BoolVarP(&config.NoGrid, "nogrid", "n", false, "do not draw grid lines")
pflag.BoolVarP(&config.Empty, "empty", "e", false, "start with an empty screen")
pflag.BoolVarP(&config.Invert, "invert", "i", false, "invert colors (dead cell: black)")
pflag.BoolVarP(&config.ShowEvolution, "show-evolution", "s", false, "show evolution tracks")
pflag.BoolVarP(&config.Wrap, "wrap-around", "w", false, "wrap around grid mode")
pflag.Parse()
if showversion {
fmt.Printf("This is golsky version %s\n", VERSION)
os.Exit(0)
}
// check if we have been given an RLE file to load
config.RLE = GetRLE(rlefile)
if config.RLE != nil {
if config.RLE.Width > config.Width || config.RLE.Height > config.Height {
config.Width = config.RLE.Width * 2
config.Height = config.RLE.Height * 2
fmt.Printf("rlew: %d, rleh: %d, w: %d, h: %d\n",
config.RLE.Width, config.RLE.Height, config.Width, config.Height)
}
// RLE needs an empty grid
config.Empty = true
// it may come with its own rule
if config.RLE.Rule != "" {
config.Rule = ParseGameRule(config.RLE.Rule)
}
} else if config.Statefile != "" {
grid, err := LoadState(config.Statefile)
if err != nil {
log.Fatalf("failed to load game state: %s", err)
}
config.Width = grid.Width
config.Height = grid.Height
config.StateGrid = grid
}
config.ScreenWidth = config.Cellsize * config.Width
config.ScreenHeight = config.Cellsize * config.Height
// load rule from commandline when no rule came from RLE file,
// default is B3/S23, aka conways game of life
if config.Rule == nil {
config.Rule = ParseGameRule(rule)
}
return &config
}

612
game.go
View File

@@ -1,597 +1,61 @@
package main
import (
"fmt"
"image"
"image/color"
"log"
"math/rand"
"os"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"github.com/hajimehoshi/ebiten/v2/inpututil"
"github.com/hajimehoshi/ebiten/v2/vector"
"github.com/tlinden/golsky/rle"
"golang.org/x/image/math/f64"
)
type Images struct {
Black, White, Age1, Age2, Age3, Age4, Old *ebiten.Image
}
import "github.com/hajimehoshi/ebiten/v2"
type Game struct {
Grids []*Grid // 2 grids: one current, one next
History *Grid // holds state of past dead cells for evolution tracks
Index int // points to current grid
Width, Height, Cellsize, Density int // measurements
ScreenWidth, ScreenHeight int
Generations int64 // Stats
Black, White, Grey, Old color.RGBA
AgeColor1, AgeColor2, AgeColor3, AgeColor4 color.RGBA
TPG int // ticks per generation/game speed, 1==max
TicksElapsed int // tick counter for game speed
Debug, Paused, Empty, Invert bool // game modi
ShowEvolution, NoGrid, RunOneStep bool // flags
Rule *Rule // which rule to use, default: B3/S23
Tiles Images // pre-computed tiles for dead and alife cells
RLE *rle.RLE // loaded GOL pattern from RLE file
Camera Camera // for zoom+move
World *ebiten.Image // actual image we render to
WheelTurned bool // when user turns wheel multiple times, zoom faster
Dragging bool // middle mouse is pressed, move canvas
LastCursorPos []int // used to check if the user is dragging
Statefile string // load game state from it if non-nil
Markmode bool // enabled with 'c'
MarkTaken bool // true when mouse1 pressed
MarkDone bool // true when mouse1 released, copy cells between Mark+Point
Mark, Point image.Point // area to marks+save
Wrap bool // wether wraparound mode is in place or not
ScreenWidth, ScreenHeight, Cellsize int
Scenes map[SceneName]Scene
CurrentScene SceneName
Config *Config
}
func NewGame(config *Config, startscene SceneName) *Game {
game := &Game{
Config: config,
Scenes: map[SceneName]Scene{},
ScreenWidth: config.ScreenWidth,
ScreenHeight: config.ScreenHeight,
}
game.CurrentScene = startscene
game.Scenes[Play] = NewPlayScene(game, config)
return game
}
func (game *Game) GetCurrentScene() Scene {
return game.Scenes[game.CurrentScene]
}
func (game *Game) Layout(outsideWidth, outsideHeight int) (int, int) {
return game.ScreenWidth, game.ScreenHeight
}
func (game *Game) CheckRule(state int64, neighbors int64) int64 {
var nextstate int64
// The standard Game of Life is symbolized in rule-string notation
// as B3/S23 (23/3 here). A cell is born if it has exactly three
// neighbors, survives if it has two or three living neighbors,
// and dies otherwise. The first number, or list of numbers, is
// what is required for a dead cell to be born.
if state == 0 && Contains(game.Rule.Birth, neighbors) {
nextstate = Alive
} else if state == 1 && Contains(game.Rule.Death, neighbors) {
nextstate = Alive
} else {
nextstate = Dead
}
return nextstate
}
// Update all cells according to the current rule
func (game *Game) UpdateCells() {
// count ticks so we know when to actually run
game.TicksElapsed++
if game.TPG > game.TicksElapsed {
// need to sleep a little more
return
}
// next grid index, we just xor 0|1 to 1|0
next := game.Index ^ 1
// compute life status of cells
for y := 0; y < game.Height; y++ {
for x := 0; x < game.Width; x++ {
state := game.Grids[game.Index].Data[y][x] // 0|1 == dead or alive
neighbors := game.CountNeighbors(x, y) // alive neighbor count
// actually apply the current rules
nextstate := game.CheckRule(state, neighbors)
// change state of current cell in next grid
game.Grids[next].Data[y][x] = nextstate
// set history to current generation so we can infer the
// age of the cell's state during rendering and use it to
// deduce the color to use if evolution tracking is enabled
if state != nextstate {
game.History.Data[y][x] = game.Generations
}
}
}
// switch grid for rendering
game.Index ^= 1
// global stats counter
game.Generations++
if game.RunOneStep {
// setp-wise mode, halt the game
game.RunOneStep = false
}
// reset speed counter
game.TicksElapsed = 0
}
func (game *Game) Reset() {
game.Paused = true
game.InitGrid(nil)
game.Paused = false
}
// check user input
func (game *Game) CheckInput() {
if inpututil.IsKeyJustPressed(ebiten.KeyQ) {
os.Exit(0)
}
if inpututil.IsKeyJustPressed(ebiten.KeyC) {
fmt.Println("mark mode on")
game.Markmode = true
}
if game.Markmode {
return
}
if inpututil.IsKeyJustPressed(ebiten.KeySpace) || inpututil.IsKeyJustPressed(ebiten.KeyEnter) {
game.Paused = !game.Paused
}
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonLeft) {
game.ToggleCellOnCursorPos(Alive)
game.Paused = true // drawing while running makes no sense
}
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonRight) {
game.ToggleCellOnCursorPos(Dead)
game.Paused = true // drawing while running makes no sense
}
if ebiten.IsKeyPressed(ebiten.KeyPageDown) {
if game.TPG < 120 {
game.TPG++
}
}
if ebiten.IsKeyPressed(ebiten.KeyPageUp) {
if game.TPG > 1 {
game.TPG--
}
}
if inpututil.IsKeyJustPressed(ebiten.KeyS) {
game.SaveState()
}
if inpututil.IsKeyJustPressed(ebiten.KeyR) {
game.Reset()
}
if game.Paused {
if inpututil.IsKeyJustPressed(ebiten.KeyN) {
game.RunOneStep = true
}
}
}
// Check dragging input. move the canvas with the mouse while pressing
// the middle mouse button, zoom in and out using the wheel.
func (game *Game) CheckDraggingInput() {
if game.Markmode {
return
}
// move canvas
if game.Dragging && !ebiten.IsMouseButtonPressed(ebiten.MouseButton1) {
// release
game.Dragging = false
}
if !game.Dragging && ebiten.IsMouseButtonPressed(ebiten.MouseButton1) {
// start dragging
game.Dragging = true
game.LastCursorPos[0], game.LastCursorPos[1] = ebiten.CursorPosition()
}
if game.Dragging {
x, y := ebiten.CursorPosition()
if x != game.LastCursorPos[0] || y != game.LastCursorPos[1] {
// actually drag by mouse cursor pos diff to last cursor pos
game.Camera.Position[0] -= float64(x - game.LastCursorPos[0])
game.Camera.Position[1] -= float64(y - game.LastCursorPos[1])
}
game.LastCursorPos[0], game.LastCursorPos[1] = ebiten.CursorPosition()
}
// also support the arrow keys to move the canvas
if ebiten.IsKeyPressed(ebiten.KeyArrowLeft) {
game.Camera.Position[0] -= 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowRight) {
game.Camera.Position[0] += 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowUp) {
game.Camera.Position[1] -= 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowDown) {
game.Camera.Position[1] += 1
}
// Zoom
_, dy := ebiten.Wheel()
step := 1
if game.WheelTurned {
// if keep scrolling the wheel, zoom faster
step = 50
} else {
game.WheelTurned = false
}
if dy < 0 {
if game.Camera.ZoomFactor > -2400 {
game.Camera.ZoomFactor -= step
}
}
if dy > 0 {
if game.Camera.ZoomFactor < 2400 {
game.Camera.ZoomFactor += step
}
}
if inpututil.IsKeyJustPressed(ebiten.KeyEscape) {
game.Camera.Reset()
}
}
func (game *Game) GetWorldCursorPos() image.Point {
worldX, worldY := game.Camera.ScreenToWorld(ebiten.CursorPosition())
return image.Point{
X: int(worldX) / game.Cellsize,
Y: int(worldY) / game.Cellsize,
}
}
func (game *Game) CheckMarkInput() {
if !game.Markmode {
return
}
if ebiten.IsMouseButtonPressed(ebiten.MouseButton0) {
if !game.MarkTaken {
game.Mark = game.GetWorldCursorPos()
game.MarkTaken = true
game.MarkDone = false
}
game.Point = game.GetWorldCursorPos()
fmt.Printf("Mark: %v, Current: %v\n", game.Mark, game.Point)
} else if inpututil.IsMouseButtonJustReleased(ebiten.MouseButton0) {
game.Markmode = false
game.MarkTaken = false
game.MarkDone = true
}
}
func (game *Game) SaveState() {
filename := GetFilename(game.Generations)
err := game.Grids[game.Index].SaveState(filename)
if err != nil {
log.Printf("failed to save game state to %s: %s", filename, err)
}
log.Printf("saved game state to %s at generation %d\n", filename, game.Generations)
}
func (game *Game) Update() error {
game.CheckInput()
game.CheckDraggingInput()
game.CheckMarkInput()
scene := game.GetCurrentScene()
scene.Update()
if !game.Paused || game.RunOneStep {
game.UpdateCells()
next := scene.GetNext()
if next != game.CurrentScene {
// make sure we stay on the selected scene
scene.ResetNext()
// finally switch
game.CurrentScene = next
}
return nil
}
// set a cell to alive or dead
func (game *Game) ToggleCellOnCursorPos(alive int64) {
// use cursor pos relative to the world
worldX, worldY := game.Camera.ScreenToWorld(ebiten.CursorPosition())
x := int(worldX) / game.Cellsize
y := int(worldY) / game.Cellsize
//fmt.Printf("cell at %d,%d\n", x, y)
if x > -1 && y > -1 {
game.Grids[game.Index].Data[y][x] = alive
game.History.Data[y][x] = 1
}
}
// draw the new grid state
func (game *Game) Draw(screen *ebiten.Image) {
// we fill the whole screen with a background color, the cells
// themselfes will be 1px smaller as their nominal size, producing
// a nice grey grid with grid lines
op := &ebiten.DrawImageOptions{}
scene := game.GetCurrentScene()
if game.NoGrid {
game.World.Fill(game.White)
if scene.Clearscreen() {
ebiten.SetScreenClearedEveryFrame(true)
} else {
game.World.Fill(game.Grey)
ebiten.SetScreenClearedEveryFrame(false)
}
for y := 0; y < game.Height; y++ {
for x := 0; x < game.Width; x++ {
op.GeoM.Reset()
op.GeoM.Translate(float64(x*game.Cellsize), float64(y*game.Cellsize))
age := game.Generations - game.History.Data[y][x]
switch game.Grids[game.Index].Data[y][x] {
case 1:
if age > 50 && game.ShowEvolution {
game.World.DrawImage(game.Tiles.Old, op)
} else {
game.World.DrawImage(game.Tiles.Black, op)
}
case 0:
if game.History.Data[y][x] > 1 && game.ShowEvolution {
switch {
case age < 10:
game.World.DrawImage(game.Tiles.Age1, op)
case age < 20:
game.World.DrawImage(game.Tiles.Age2, op)
case age < 30:
game.World.DrawImage(game.Tiles.Age3, op)
default:
game.World.DrawImage(game.Tiles.Age4, op)
}
} else {
game.World.DrawImage(game.Tiles.White, op)
}
}
}
}
game.Camera.Render(game.World, screen)
if game.Debug {
paused := ""
if game.Paused {
paused = "-- paused --"
}
ebitenutil.DebugPrint(
screen,
fmt.Sprintf("FPS: %0.2f, TPG: %d, Mem: %0.2f MB, Generations: %d %s",
ebiten.ActualTPS(), game.TPG, GetMem(), game.Generations, paused),
)
}
}
// FIXME: move these into Grid
// load a pre-computed pattern from RLE file
func (game *Game) InitPattern() {
if game.RLE != nil {
startX := (game.Width / 2) - (game.RLE.Width / 2)
startY := (game.Height / 2) - (game.RLE.Height / 2)
var y, x int
for rowIndex, patternRow := range game.RLE.Pattern {
for colIndex := range patternRow {
if game.RLE.Pattern[rowIndex][colIndex] > 0 {
x = colIndex + startX
y = rowIndex + startY
game.History.Data[y][x] = 1
game.Grids[0].Data[y][x] = 1
}
}
}
}
}
// initialize playing field/grid
func (game *Game) _InitGrid(grid *Grid) {
if grid != nil {
// use pre-loaded grid
game.Grids = []*Grid{
grid,
NewGrid(grid.Width, grid.Height),
}
game.History = NewGrid(grid.Width, grid.Height)
return
}
grida := NewGrid(game.Width, game.Height)
grida.FillRandom(game)
game.Grids = []*Grid{
grida,
NewGrid(grida.Width, grida.Height),
}
game.History = grida.Clone()
}
func (game *Game) InitGrid(grid *Grid) {
if grid != nil {
// use pre-loaded grid
game.Grids = []*Grid{
grid,
NewGrid(grid.Width, grid.Height),
}
game.History = NewGrid(grid.Width, grid.Height)
return
}
grida := NewGrid(game.Width, game.Height)
gridb := NewGrid(game.Width, game.Height)
history := NewGrid(game.Width, game.Height)
for y := 0; y < game.Height; y++ {
if !game.Empty {
for x := 0; x < game.Width; x++ {
if rand.Intn(game.Density) == 1 {
history.Data[y][x] = 1
grida.Data[y][x] = 1
}
}
}
}
game.Grids = []*Grid{
grida,
gridb,
}
game.History = history
}
// prepare tile images
func (game *Game) InitTiles() {
game.Grey = color.RGBA{128, 128, 128, 0xff}
game.Old = color.RGBA{255, 30, 30, 0xff}
game.Black = color.RGBA{0, 0, 0, 0xff}
game.White = color.RGBA{200, 200, 200, 0xff}
game.AgeColor1 = color.RGBA{255, 195, 97, 0xff} // FIXME: use slice!
game.AgeColor2 = color.RGBA{255, 211, 140, 0xff}
game.AgeColor3 = color.RGBA{255, 227, 181, 0xff}
game.AgeColor4 = color.RGBA{255, 240, 224, 0xff}
if game.Invert {
game.White = color.RGBA{0, 0, 0, 0xff}
game.Black = color.RGBA{200, 200, 200, 0xff}
game.AgeColor1 = color.RGBA{82, 38, 0, 0xff}
game.AgeColor2 = color.RGBA{66, 35, 0, 0xff}
game.AgeColor3 = color.RGBA{43, 27, 0, 0xff}
game.AgeColor4 = color.RGBA{25, 17, 0, 0xff}
}
game.Tiles.Black = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Tiles.White = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Tiles.Old = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Tiles.Age1 = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Tiles.Age2 = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Tiles.Age3 = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Tiles.Age4 = ebiten.NewImage(game.Cellsize, game.Cellsize)
cellsize := game.ScreenWidth / game.Cellsize
FillCell(game.Tiles.Black, cellsize, game.Black)
FillCell(game.Tiles.White, cellsize, game.White)
FillCell(game.Tiles.Old, cellsize, game.Old)
FillCell(game.Tiles.Age1, cellsize, game.AgeColor1)
FillCell(game.Tiles.Age2, cellsize, game.AgeColor2)
FillCell(game.Tiles.Age3, cellsize, game.AgeColor3)
FillCell(game.Tiles.Age4, cellsize, game.AgeColor4)
}
func (game *Game) Init() {
// setup the game
var grid *Grid
if game.Statefile != "" {
g, err := LoadState(game.Statefile)
if err != nil {
log.Fatalf("failed to load game state: %s", err)
}
grid = g
game.Width = grid.Width
game.Height = grid.Height
}
game.ScreenWidth = game.Cellsize * game.Width
game.ScreenHeight = game.Cellsize * game.Height
game.Camera = Camera{
ViewPort: f64.Vec2{
float64(game.ScreenWidth),
float64(game.ScreenHeight),
},
}
game.World = ebiten.NewImage(game.ScreenWidth, game.ScreenHeight)
game.InitGrid(grid)
game.InitPattern()
game.InitTiles()
game.Index = 0
game.TicksElapsed = 0
game.LastCursorPos = make([]int, 2)
}
// count the living neighbors of a cell
func (game *Game) CountNeighbors(x, y int) int64 {
var sum int64
for nbgX := -1; nbgX < 2; nbgX++ {
for nbgY := -1; nbgY < 2; nbgY++ {
fmt.Printf("nbgX: %d, nbgY: %d\n", nbgX, nbgY)
var col, row int
if game.Wrap {
// In wrap mode we look at all the 8 neighbors surrounding us.
// In case we are on an edge we'll look at the neighbor on the
// other side of the grid, thus wrapping lookahead around
// using the mod() function.
col = (x + nbgX + game.Width) % game.Width
row = (y + nbgY + game.Height) % game.Height
} else {
// In traditional grid mode the edges are deadly
if x+nbgX < 0 || x+nbgX >= game.Width || y+nbgY < 0 || y+nbgY >= game.Height {
continue
}
col = x + nbgX
row = y + nbgY
}
sum += game.Grids[game.Index].Data[row][col]
}
}
// don't count ourselfes though
sum -= game.Grids[game.Index].Data[y][x]
return sum
}
// fill a cell with the given color
func FillCell(tile *ebiten.Image, cellsize int, col color.RGBA) {
vector.DrawFilledRect(
tile,
float32(1),
float32(1),
float32(cellsize-1),
float32(cellsize-1),
col, false,
)
scene.Draw(screen)
}

13
grid.go
View File

@@ -13,15 +13,18 @@ import (
type Grid struct {
Data [][]int64
Width, Height int
Width, Height, Density int
Empty bool
}
// Create new empty grid and allocate Data according to provided dimensions
func NewGrid(width, height int) *Grid {
func NewGrid(width, height, density int, empty bool) *Grid {
grid := &Grid{
Height: height,
Width: width,
Density: density,
Data: make([][]int64, height),
Empty: empty,
}
for y := 0; y < height; y++ {
@@ -49,11 +52,11 @@ func (grid *Grid) Clear() {
}
}
func (grid *Grid) FillRandom(game *Game) {
if !game.Empty {
func (grid *Grid) FillRandom(game *ScenePlay) {
if !grid.Empty {
for y := range grid.Data {
for x := range grid.Data[y] {
if rand.Intn(game.Density) == 1 {
if rand.Intn(grid.Density) == 1 {
grid.Data[y][x] = 1
}
}

63
main.go
View File

@@ -1,14 +1,12 @@
package main
import (
"fmt"
"log"
"os"
"github.com/tlinden/golsky/rle"
"github.com/hajimehoshi/ebiten/v2"
"github.com/spf13/pflag"
)
const (
@@ -36,66 +34,9 @@ func GetRLE(filename string) *rle.RLE {
}
func main() {
game := &Game{}
showversion := false
var rule string
var rlefile string
config := ParseCommandline()
// commandline params, most configure directly game flags
pflag.IntVarP(&game.Width, "width", "W", 40, "grid width in cells")
pflag.IntVarP(&game.Height, "height", "H", 40, "grid height in cells")
pflag.IntVarP(&game.Cellsize, "cellsize", "c", 8, "cell size in pixels")
pflag.IntVarP(&game.Density, "density", "D", 10, "density of random cells")
pflag.IntVarP(&game.TPG, "ticks-per-generation", "t", 10,
"game speed: the higher the slower (default: 10)")
pflag.StringVarP(&rule, "rule", "r", "B3/S23", "game rule")
pflag.StringVarP(&rlefile, "rle-file", "f", "", "RLE pattern file")
pflag.StringVarP(&game.Statefile, "load-state-file", "l", "", "game state file")
pflag.BoolVarP(&showversion, "version", "v", false, "show version")
pflag.BoolVarP(&game.Paused, "paused", "p", false, "do not start simulation (use space to start)")
pflag.BoolVarP(&game.Debug, "debug", "d", false, "show debug info")
pflag.BoolVarP(&game.NoGrid, "nogrid", "n", false, "do not draw grid lines")
pflag.BoolVarP(&game.Empty, "empty", "e", false, "start with an empty screen")
pflag.BoolVarP(&game.Invert, "invert", "i", false, "invert colors (dead cell: black)")
pflag.BoolVarP(&game.ShowEvolution, "show-evolution", "s", false, "show evolution tracks")
pflag.BoolVarP(&game.Wrap, "wrap-around", "w", false, "wrap around grid mode")
pflag.Parse()
if showversion {
fmt.Printf("This is golsky version %s\n", VERSION)
os.Exit(0)
}
// check if we have been given an RLE file to load
game.RLE = GetRLE(rlefile)
if game.RLE != nil {
if game.RLE.Width > game.Width || game.RLE.Height > game.Height {
game.Width = game.RLE.Width * 2
game.Height = game.RLE.Height * 2
fmt.Printf("rlew: %d, rleh: %d, w: %d, h: %d\n",
game.RLE.Width, game.RLE.Height, game.Width, game.Height)
}
// RLE needs an empty grid
game.Empty = true
// it may come with its own rule
if game.RLE.Rule != "" {
game.Rule = ParseGameRule(game.RLE.Rule)
}
}
// load rule from commandline when no rule came from RLE file,
// default is B3/S23, aka conways game of life
if game.Rule == nil {
game.Rule = ParseGameRule(rule)
}
// bootstrap the game
game.Init()
game := NewGame(config, Play)
// setup environment
ebiten.SetWindowSize(game.ScreenWidth, game.ScreenHeight)

584
scene-play.go Normal file
View File

@@ -0,0 +1,584 @@
package main
import (
"fmt"
"image"
"image/color"
"log"
"math/rand"
"os"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"github.com/hajimehoshi/ebiten/v2/inpututil"
"github.com/hajimehoshi/ebiten/v2/vector"
"golang.org/x/image/math/f64"
)
type Images struct {
Black, White, Age1, Age2, Age3, Age4, Old *ebiten.Image
}
type ScenePlay struct {
Game *Game
Config *Config
Next SceneName
Whoami SceneName
Grids []*Grid // 2 grids: one current, one next
History *Grid // holds state of past dead cells for evolution tracks
Index int // points to current grid
Generations int64 // Stats
Black, White, Grey, Old color.RGBA
AgeColor1, AgeColor2, AgeColor3, AgeColor4 color.RGBA
TicksElapsed int // tick counter for game speed
Tiles Images // pre-computed tiles for dead and alife cells
Camera Camera // for zoom+move
World *ebiten.Image // actual image we render to
WheelTurned bool // when user turns wheel multiple times, zoom faster
Dragging bool // middle mouse is pressed, move canvas
LastCursorPos []int // used to check if the user is dragging
Markmode bool // enabled with 'c'
MarkTaken bool // true when mouse1 pressed
MarkDone bool // true when mouse1 released, copy cells between Mark+Point
Mark, Point image.Point // area to marks+save
Paused, RunOneStep bool // mutable flags from config
TPG int
}
func NewPlayScene(game *Game, config *Config) Scene {
scene := &ScenePlay{
Whoami: Play,
Game: game,
Next: Play,
Config: config,
Paused: config.Paused,
TPG: config.TPG,
RunOneStep: config.RunOneStep,
}
scene.Init()
return scene
}
func (scene *ScenePlay) GetNext() SceneName {
return scene.Next
}
func (scene *ScenePlay) ResetNext() {
scene.Next = scene.Whoami
}
func (scene *ScenePlay) SetNext(next SceneName) {
scene.Next = next
}
func (scene *ScenePlay) Clearscreen() bool {
return true
}
func (scene *ScenePlay) CheckRule(state int64, neighbors int64) int64 {
var nextstate int64
// The standard Scene of Life is symbolized in rule-string notation
// as B3/S23 (23/3 here). A cell is born if it has exactly three
// neighbors, survives if it has two or three living neighbors,
// and dies otherwise. The first number, or list of numbers, is
// what is required for a dead cell to be born.
if state == 0 && Contains(scene.Config.Rule.Birth, neighbors) {
nextstate = Alive
} else if state == 1 && Contains(scene.Config.Rule.Death, neighbors) {
nextstate = Alive
} else {
nextstate = Dead
}
return nextstate
}
// Update all cells according to the current rule
func (scene *ScenePlay) UpdateCells() {
// count ticks so we know when to actually run
scene.TicksElapsed++
if scene.TPG > scene.TicksElapsed {
// need to sleep a little more
return
}
// next grid index, we just xor 0|1 to 1|0
next := scene.Index ^ 1
// compute life status of cells
for y := 0; y < scene.Config.Height; y++ {
for x := 0; x < scene.Config.Width; x++ {
state := scene.Grids[scene.Index].Data[y][x] // 0|1 == dead or alive
neighbors := scene.CountNeighbors(x, y) // alive neighbor count
// actually apply the current rules
nextstate := scene.CheckRule(state, neighbors)
// change state of current cell in next grid
scene.Grids[next].Data[y][x] = nextstate
// set history to current generation so we can infer the
// age of the cell's state during rendering and use it to
// deduce the color to use if evolution tracking is enabled
if state != nextstate {
scene.History.Data[y][x] = scene.Generations
}
}
}
// switch grid for rendering
scene.Index ^= 1
// global stats counter
scene.Generations++
if scene.Config.RunOneStep {
// setp-wise mode, halt the game
scene.Config.RunOneStep = false
}
// reset speed counter
scene.TicksElapsed = 0
}
func (scene *ScenePlay) Reset() {
scene.Paused = true
scene.InitGrid(nil)
scene.Paused = false
}
// check user input
func (scene *ScenePlay) CheckInput() {
if inpututil.IsKeyJustPressed(ebiten.KeyQ) {
os.Exit(0)
}
if inpututil.IsKeyJustPressed(ebiten.KeyC) {
fmt.Println("mark mode on")
scene.Markmode = true
}
if scene.Markmode {
return
}
if inpututil.IsKeyJustPressed(ebiten.KeySpace) || inpututil.IsKeyJustPressed(ebiten.KeyEnter) {
scene.Paused = !scene.Paused
}
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonLeft) {
scene.ToggleCellOnCursorPos(Alive)
scene.Paused = true // drawing while running makes no sense
}
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonRight) {
scene.ToggleCellOnCursorPos(Dead)
scene.Paused = true // drawing while running makes no sense
}
if ebiten.IsKeyPressed(ebiten.KeyPageDown) {
if scene.Config.TPG < 120 {
scene.Config.TPG++
}
}
if ebiten.IsKeyPressed(ebiten.KeyPageUp) {
if scene.TPG > 1 {
scene.TPG--
}
}
if inpututil.IsKeyJustPressed(ebiten.KeyS) {
scene.SaveState()
}
if inpututil.IsKeyJustPressed(ebiten.KeyR) {
scene.Reset()
}
if scene.Paused {
if inpututil.IsKeyJustPressed(ebiten.KeyN) {
scene.Config.RunOneStep = true
}
}
}
// Check dragging input. move the canvas with the mouse while pressing
// the middle mouse button, zoom in and out using the wheel.
func (scene *ScenePlay) CheckDraggingInput() {
if scene.Markmode {
return
}
// move canvas
if scene.Dragging && !ebiten.IsMouseButtonPressed(ebiten.MouseButton1) {
// release
scene.Dragging = false
}
if !scene.Dragging && ebiten.IsMouseButtonPressed(ebiten.MouseButton1) {
// start dragging
scene.Dragging = true
scene.LastCursorPos[0], scene.LastCursorPos[1] = ebiten.CursorPosition()
}
if scene.Dragging {
x, y := ebiten.CursorPosition()
if x != scene.LastCursorPos[0] || y != scene.LastCursorPos[1] {
// actually drag by mouse cursor pos diff to last cursor pos
scene.Camera.Position[0] -= float64(x - scene.LastCursorPos[0])
scene.Camera.Position[1] -= float64(y - scene.LastCursorPos[1])
}
scene.LastCursorPos[0], scene.LastCursorPos[1] = ebiten.CursorPosition()
}
// also support the arrow keys to move the canvas
if ebiten.IsKeyPressed(ebiten.KeyArrowLeft) {
scene.Camera.Position[0] -= 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowRight) {
scene.Camera.Position[0] += 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowUp) {
scene.Camera.Position[1] -= 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowDown) {
scene.Camera.Position[1] += 1
}
// Zoom
_, dy := ebiten.Wheel()
step := 1
if scene.WheelTurned {
// if keep scrolling the wheel, zoom faster
step = 50
} else {
scene.WheelTurned = false
}
if dy < 0 {
if scene.Camera.ZoomFactor > -2400 {
scene.Camera.ZoomFactor -= step
}
}
if dy > 0 {
if scene.Camera.ZoomFactor < 2400 {
scene.Camera.ZoomFactor += step
}
}
if inpututil.IsKeyJustPressed(ebiten.KeyEscape) {
scene.Camera.Reset()
}
}
func (scene *ScenePlay) GetWorldCursorPos() image.Point {
worldX, worldY := scene.Camera.ScreenToWorld(ebiten.CursorPosition())
return image.Point{
X: int(worldX) / scene.Config.Cellsize,
Y: int(worldY) / scene.Config.Cellsize,
}
}
func (scene *ScenePlay) CheckMarkInput() {
if !scene.Markmode {
return
}
if ebiten.IsMouseButtonPressed(ebiten.MouseButton0) {
if !scene.MarkTaken {
scene.Mark = scene.GetWorldCursorPos()
scene.MarkTaken = true
scene.MarkDone = false
}
scene.Point = scene.GetWorldCursorPos()
fmt.Printf("Mark: %v, Current: %v\n", scene.Mark, scene.Point)
} else if inpututil.IsMouseButtonJustReleased(ebiten.MouseButton0) {
scene.Markmode = false
scene.MarkTaken = false
scene.MarkDone = true
}
}
func (scene *ScenePlay) SaveState() {
filename := GetFilename(scene.Generations)
err := scene.Grids[scene.Index].SaveState(filename)
if err != nil {
log.Printf("failed to save game state to %s: %s", filename, err)
}
log.Printf("saved game state to %s at generation %d\n", filename, scene.Generations)
}
func (scene *ScenePlay) Update() error {
scene.CheckInput()
scene.CheckDraggingInput()
scene.CheckMarkInput()
if !scene.Paused || scene.RunOneStep {
scene.UpdateCells()
}
return nil
}
// set a cell to alive or dead
func (scene *ScenePlay) ToggleCellOnCursorPos(alive int64) {
// use cursor pos relative to the world
worldX, worldY := scene.Camera.ScreenToWorld(ebiten.CursorPosition())
x := int(worldX) / scene.Config.Cellsize
y := int(worldY) / scene.Config.Cellsize
//fmt.Printf("cell at %d,%d\n", x, y)
if x > -1 && y > -1 {
scene.Grids[scene.Index].Data[y][x] = alive
scene.History.Data[y][x] = 1
}
}
// draw the new grid state
func (scene *ScenePlay) Draw(screen *ebiten.Image) {
// we fill the whole screen with a background color, the cells
// themselfes will be 1px smaller as their nominal size, producing
// a nice grey grid with grid lines
op := &ebiten.DrawImageOptions{}
if scene.Config.NoGrid {
scene.World.Fill(scene.White)
} else {
scene.World.Fill(scene.Grey)
}
for y := 0; y < scene.Config.Height; y++ {
for x := 0; x < scene.Config.Width; x++ {
op.GeoM.Reset()
op.GeoM.Translate(float64(x*scene.Config.Cellsize), float64(y*scene.Config.Cellsize))
age := scene.Generations - scene.History.Data[y][x]
switch scene.Grids[scene.Index].Data[y][x] {
case 1:
if age > 50 && scene.Config.ShowEvolution {
scene.World.DrawImage(scene.Tiles.Old, op)
} else {
scene.World.DrawImage(scene.Tiles.Black, op)
}
case 0:
if scene.History.Data[y][x] > 1 && scene.Config.ShowEvolution {
switch {
case age < 10:
scene.World.DrawImage(scene.Tiles.Age1, op)
case age < 20:
scene.World.DrawImage(scene.Tiles.Age2, op)
case age < 30:
scene.World.DrawImage(scene.Tiles.Age3, op)
default:
scene.World.DrawImage(scene.Tiles.Age4, op)
}
} else {
scene.World.DrawImage(scene.Tiles.White, op)
}
}
}
}
scene.Camera.Render(scene.World, screen)
if scene.Config.Debug {
paused := ""
if scene.Paused {
paused = "-- paused --"
}
ebitenutil.DebugPrint(
screen,
fmt.Sprintf("FPS: %0.2f, TPG: %d, Mem: %0.2f MB, Generations: %d %s",
ebiten.ActualTPS(), scene.TPG, GetMem(), scene.Generations, paused),
)
}
}
// FIXME: move these into Grid
// load a pre-computed pattern from RLE file
func (scene *ScenePlay) InitPattern() {
if scene.Config.RLE != nil {
startX := (scene.Config.Width / 2) - (scene.Config.RLE.Width / 2)
startY := (scene.Config.Height / 2) - (scene.Config.RLE.Height / 2)
var y, x int
for rowIndex, patternRow := range scene.Config.RLE.Pattern {
for colIndex := range patternRow {
if scene.Config.RLE.Pattern[rowIndex][colIndex] > 0 {
x = colIndex + startX
y = rowIndex + startY
scene.History.Data[y][x] = 1
scene.Grids[0].Data[y][x] = 1
}
}
}
}
}
func (scene *ScenePlay) InitGrid(grid *Grid) {
if grid != nil {
// use pre-loaded grid
scene.Grids = []*Grid{
grid,
NewGrid(grid.Width, grid.Height, 0, false),
}
scene.History = NewGrid(grid.Width, grid.Height, 0, false)
return
}
grida := NewGrid(scene.Config.Width, scene.Config.Height, scene.Config.Density, scene.Config.Empty)
gridb := NewGrid(scene.Config.Width, scene.Config.Height, scene.Config.Density, scene.Config.Empty)
history := NewGrid(scene.Config.Width, scene.Config.Height, scene.Config.Density, scene.Config.Empty)
for y := 0; y < scene.Config.Height; y++ {
if !scene.Config.Empty {
for x := 0; x < scene.Config.Width; x++ {
if rand.Intn(scene.Config.Density) == 1 {
history.Data[y][x] = 1
grida.Data[y][x] = 1
}
}
}
}
scene.Grids = []*Grid{
grida,
gridb,
}
scene.History = history
}
// prepare tile images
func (scene *ScenePlay) InitTiles() {
scene.Grey = color.RGBA{128, 128, 128, 0xff}
scene.Old = color.RGBA{255, 30, 30, 0xff}
scene.Black = color.RGBA{0, 0, 0, 0xff}
scene.White = color.RGBA{200, 200, 200, 0xff}
scene.AgeColor1 = color.RGBA{255, 195, 97, 0xff} // FIXME: use slice!
scene.AgeColor2 = color.RGBA{255, 211, 140, 0xff}
scene.AgeColor3 = color.RGBA{255, 227, 181, 0xff}
scene.AgeColor4 = color.RGBA{255, 240, 224, 0xff}
if scene.Config.Invert {
scene.White = color.RGBA{0, 0, 0, 0xff}
scene.Black = color.RGBA{200, 200, 200, 0xff}
scene.AgeColor1 = color.RGBA{82, 38, 0, 0xff}
scene.AgeColor2 = color.RGBA{66, 35, 0, 0xff}
scene.AgeColor3 = color.RGBA{43, 27, 0, 0xff}
scene.AgeColor4 = color.RGBA{25, 17, 0, 0xff}
}
scene.Tiles.Black = ebiten.NewImage(scene.Config.Cellsize, scene.Config.Cellsize)
scene.Tiles.White = ebiten.NewImage(scene.Config.Cellsize, scene.Config.Cellsize)
scene.Tiles.Old = ebiten.NewImage(scene.Config.Cellsize, scene.Config.Cellsize)
scene.Tiles.Age1 = ebiten.NewImage(scene.Config.Cellsize, scene.Config.Cellsize)
scene.Tiles.Age2 = ebiten.NewImage(scene.Config.Cellsize, scene.Config.Cellsize)
scene.Tiles.Age3 = ebiten.NewImage(scene.Config.Cellsize, scene.Config.Cellsize)
scene.Tiles.Age4 = ebiten.NewImage(scene.Config.Cellsize, scene.Config.Cellsize)
cellsize := scene.Config.ScreenWidth / scene.Config.Cellsize
FillCell(scene.Tiles.Black, cellsize, scene.Black)
FillCell(scene.Tiles.White, cellsize, scene.White)
FillCell(scene.Tiles.Old, cellsize, scene.Old)
FillCell(scene.Tiles.Age1, cellsize, scene.AgeColor1)
FillCell(scene.Tiles.Age2, cellsize, scene.AgeColor2)
FillCell(scene.Tiles.Age3, cellsize, scene.AgeColor3)
FillCell(scene.Tiles.Age4, cellsize, scene.AgeColor4)
}
func (scene *ScenePlay) Init() {
// setup the scene
var grid *Grid
if scene.Config.StateGrid != nil {
grid = scene.Config.StateGrid
}
scene.Camera = Camera{
ViewPort: f64.Vec2{
float64(scene.Config.ScreenWidth),
float64(scene.Config.ScreenHeight),
},
}
scene.World = ebiten.NewImage(scene.Config.ScreenWidth, scene.Config.ScreenHeight)
scene.InitGrid(grid)
scene.InitPattern()
scene.InitTiles()
scene.Index = 0
scene.TicksElapsed = 0
scene.LastCursorPos = make([]int, 2)
}
// count the living neighbors of a cell
func (scene *ScenePlay) CountNeighbors(x, y int) int64 {
var sum int64
for nbgX := -1; nbgX < 2; nbgX++ {
for nbgY := -1; nbgY < 2; nbgY++ {
var col, row int
if scene.Config.Wrap {
// In wrap mode we look at all the 8 neighbors surrounding us.
// In case we are on an edge we'll look at the neighbor on the
// other side of the grid, thus wrapping lookahead around
// using the mod() function.
col = (x + nbgX + scene.Config.Width) % scene.Config.Width
row = (y + nbgY + scene.Config.Height) % scene.Config.Height
} else {
// In traditional grid mode the edges are deadly
if x+nbgX < 0 || x+nbgX >= scene.Config.Width || y+nbgY < 0 || y+nbgY >= scene.Config.Height {
continue
}
col = x + nbgX
row = y + nbgY
}
sum += scene.Grids[scene.Index].Data[row][col]
}
}
// don't count ourselfes though
sum -= scene.Grids[scene.Index].Data[y][x]
return sum
}
// fill a cell with the given color
func FillCell(tile *ebiten.Image, cellsize int, col color.RGBA) {
vector.DrawFilledRect(
tile,
float32(1),
float32(1),
float32(cellsize-1),
float32(cellsize-1),
col, false,
)
}

25
scene.go Normal file
View File

@@ -0,0 +1,25 @@
package main
import "github.com/hajimehoshi/ebiten/v2"
// Wrapper for different screens to be shown, as Welcome, Options,
// About, Menu Level and of course the actual game
// Scenes are responsible for screen clearing! That way a scene is able
// to render its content onto the running level, e.g. the options scene
// etc.
type SceneName int
type Scene interface {
SetNext(SceneName)
GetNext() SceneName
ResetNext()
Clearscreen() bool
Update() error
Draw(screen *ebiten.Image)
}
const (
Menu = iota // main top level menu
Play // actual playing happens here
)