Files
golsky/various-tests/drawtriangles/main.go

363 lines
8.0 KiB
Go

package main
import (
"fmt"
"image"
"image/color"
"log"
"math/rand"
"os"
"runtime/pprof"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/inpututil"
"github.com/hajimehoshi/ebiten/v2/vector"
)
var (
blackImage = ebiten.NewImage(3, 3)
blackSubImage = blackImage.SubImage(image.Rect(1, 1, 2, 2)).(*ebiten.Image)
)
type Images struct {
Black, White *ebiten.Image
}
type Grid struct {
Data [][]int64
Width, Height, Density int
}
// Create new empty grid and allocate Data according to provided dimensions
func NewGrid(width, height, density int) *Grid {
grid := &Grid{
Height: height,
Width: width,
Density: density,
Data: make([][]int64, height),
}
for y := 0; y < height; y++ {
grid.Data[y] = make([]int64, width)
}
return grid
}
// live console output of the grid
func (grid *Grid) Dump() {
/*
cmd := exec.Command("clear")
cmd.Stdout = os.Stdout
cmd.Run()
for y := 0; y < grid.Height; y++ {
for x := 0; x < grid.Width; x++ {
if grid.Data[y][x] == 1 {
fmt.Print("XX")
} else {
fmt.Print(" ")
}
}
fmt.Println()
}
*/
fmt.Printf("FPS: %0.2f\n", ebiten.ActualTPS())
}
type Game struct {
Width, Height, Cellsize, Density int
ScreenWidth, ScreenHeight int
Grids []*Grid
Index int
Black, White, Grey color.RGBA
Tiles Images
Cache *ebiten.Image
Elapsed int64
TPG int64 // adjust game speed independently of TPS
Vertices []ebiten.Vertex
Indices []uint16
Pause, Debug bool
}
// fill a cell
func FillCell(tile *ebiten.Image, cellsize int, col color.RGBA) {
vector.DrawFilledRect(
tile,
float32(1),
float32(1),
float32(cellsize-1),
float32(cellsize-1),
col, false,
)
}
func (game *Game) Layout(outsideWidth, outsideHeight int) (int, int) {
return game.ScreenWidth, game.ScreenHeight
}
func (game *Game) Init() {
// setup two grids, one for display, one for next state
grida := NewGrid(game.Width, game.Height, game.Density)
gridb := NewGrid(game.Width, game.Height, game.Density)
for y := 0; y < game.Height; y++ {
for x := 0; x < game.Width; x++ {
if rand.Intn(game.Density) == 1 {
grida.Data[y][x] = 1
}
}
}
game.Grids = []*Grid{
grida,
gridb,
}
// setup colors
game.Grey = color.RGBA{128, 128, 128, 0xff}
game.Black = color.RGBA{0, 0, 0, 0xff}
game.White = color.RGBA{200, 200, 200, 0xff}
game.Tiles.White = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Cache = ebiten.NewImage(game.ScreenWidth, game.ScreenHeight)
FillCell(game.Tiles.White, game.Cellsize, game.White)
game.Cache.Fill(game.Grey)
// draw the offscreen image
op := &ebiten.DrawImageOptions{}
for y := 0; y < game.Height; y++ {
for x := 0; x < game.Width; x++ {
op.GeoM.Reset()
op.GeoM.Translate(float64(x*game.Cellsize), float64(y*game.Cellsize))
game.Cache.DrawImage(game.Tiles.White, op)
}
}
blackSubImage.Fill(game.Black)
lenvertices := game.ScreenHeight * game.ScreenWidth
game.Vertices = make([]ebiten.Vertex, lenvertices)
game.Indices = make([]uint16, lenvertices+(lenvertices/2))
}
// count the living neighbors of a cell
func (game *Game) CountNeighbors(x, y int) int64 {
var sum int64
for nbgX := -1; nbgX < 2; nbgX++ {
for nbgY := -1; nbgY < 2; nbgY++ {
var col, row int
// Wrap mode we look at all the 8 neighbors surrounding
// us. In case we are on an edge we'll look at the
// neighbor on the other side of the grid, thus wrapping
// lookahead around using the mod() function.
col = (x + nbgX + game.Width) % game.Width
row = (y + nbgY + game.Height) % game.Height
sum += game.Grids[game.Index].Data[row][col]
}
}
// don't count ourselfes though
sum -= game.Grids[game.Index].Data[y][x]
return sum
}
// the heart of the game
func (game *Game) CheckRule(state int64, neighbors int64) int64 {
var nextstate int64
if state == 0 && neighbors == 3 {
nextstate = 1
} else if state == 1 && (neighbors == 2 || neighbors == 3) {
nextstate = 1
} else {
nextstate = 0
}
return nextstate
}
// we only update the cells if we are not in pause state or if the
// game timer (TPG) is elapsed.
func (game *Game) UpdateCells() {
if game.Pause {
return
}
if game.Elapsed < game.TPG {
game.Elapsed++
return
}
// next grid index. we only have to, so we just xor it
next := game.Index ^ 1
// reset vertices
// FIXME: fails!
game.ClearVertices()
// calculate cell life state, this is the actual game of life
for y := 0; y < game.Height; y++ {
for x := 0; x < game.Width; x++ {
state := game.Grids[game.Index].Data[y][x] // 0|1 == dead or alive
neighbors := game.CountNeighbors(x, y) // alive neighbor count
// actually apply the current rules
nextstate := game.CheckRule(state, neighbors)
// change state of current cell in next grid
game.Grids[next].Data[y][x] = nextstate
}
}
// calculate triangles for rendering
game.UpdateTriangles()
// switch grid for rendering
game.Index ^= 1
game.Elapsed = 0
if game.Debug {
game.Grids[next].Dump()
}
}
func (game *Game) Update() error {
game.UpdateCells()
if inpututil.IsKeyJustPressed(ebiten.KeySpace) {
game.Pause = !game.Pause
}
return nil
}
func (game *Game) ClearVertices() {
// FIXME: fails
for i := 0; i < len(game.Vertices); i++ {
game.Vertices[i] = ebiten.Vertex{}
// game.Vertices[i].DstX = 0
// game.Vertices[i].DstY = 1
}
game.Indices = game.Indices[:len(game.Indices)]
}
// create the triangles needed for rendering. Actual rendering doesn't
// happen here but in Draw()
func (game *Game) UpdateTriangles() {
var base uint16 = 0
var index uint16 = 0
idx := 0
// iterate over every cell
for celly := 0; celly < game.Height; celly++ {
for cellx := 0; cellx < game.Width; cellx++ {
// if the cell is alife
if game.Grids[game.Index].Data[celly][cellx] == 1 {
/* iterate over the cell's corners:
0 1
2 3
*/
for i := 0; i < 2; i++ {
for j := 0; j < 2; j++ {
// calculate the corner position
x := (cellx * game.Cellsize) + (i * game.Cellsize) + 1
y := (celly * game.Cellsize) + (j * game.Cellsize) + 1
if i == 1 {
x -= 1
}
if j == 1 {
y -= 1
}
// setup the vertex
game.Vertices[idx].DstX = float32(x)
game.Vertices[idx].DstY = float32(y)
game.Vertices[idx].SrcX = 1
game.Vertices[idx].SrcY = 1
game.Vertices[idx].ColorR = float32(game.Black.R)
game.Vertices[idx].ColorG = float32(game.Black.G)
game.Vertices[idx].ColorB = float32(game.Black.B)
game.Vertices[idx].ColorA = 1
idx++
}
}
}
// indices for first triangle
game.Indices[index] = base
game.Indices[index+1] = base + 1
game.Indices[index+2] = base + 3
// for the second one
game.Indices[index+3] = base
game.Indices[index+4] = base + 2
game.Indices[index+5] = base + 3
index += 6 // 3 indicies per triangle
base += 4 // 4 vertices per cell
}
}
}
func (game *Game) Draw(screen *ebiten.Image) {
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(0, 0)
screen.DrawImage(game.Cache, op)
triop := &ebiten.DrawTrianglesOptions{}
screen.DrawTriangles(game.Vertices, game.Indices, blackSubImage, triop)
}
func main() {
size := 200
game := &Game{
Width: size,
Height: size,
Cellsize: 4,
Density: 5,
TPG: 5,
Debug: true,
}
game.ScreenWidth = game.Width * game.Cellsize
game.ScreenHeight = game.Height * game.Cellsize
game.Init()
ebiten.SetWindowSize(game.ScreenWidth, game.ScreenHeight)
ebiten.SetWindowTitle("triangle conway's game of life")
ebiten.SetWindowResizingMode(ebiten.WindowResizingModeEnabled)
fd, err := os.Create("cpu.profile")
if err != nil {
log.Fatal(err)
}
defer fd.Close()
pprof.StartCPUProfile(fd)
defer pprof.StopCPUProfile()
if err := ebiten.RunGame(game); err != nil {
log.Fatal(err)
}
}