mirror of
https://codeberg.org/scip/golsky.git
synced 2025-12-16 20:20:57 +01:00
441 lines
10 KiB
Go
441 lines
10 KiB
Go
package main
|
|
|
|
import (
|
|
"fmt"
|
|
"image/color"
|
|
"log"
|
|
"math/rand"
|
|
"os"
|
|
"runtime"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/alecthomas/repr"
|
|
"github.com/hajimehoshi/ebiten/v2"
|
|
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
|
|
"github.com/hajimehoshi/ebiten/v2/inpututil"
|
|
"github.com/hajimehoshi/ebiten/v2/vector"
|
|
"github.com/spf13/pflag"
|
|
)
|
|
|
|
const (
|
|
VERSION = "v0.0.4"
|
|
Alive = 1
|
|
Dead = 0
|
|
)
|
|
|
|
type Grid struct {
|
|
Data [][]int
|
|
}
|
|
|
|
type Images struct {
|
|
Black, White, Beige *ebiten.Image
|
|
}
|
|
|
|
type Game struct {
|
|
Grids []*Grid // 2 grids: one current, one next
|
|
History *Grid // holds state of past dead cells for evolution tracks
|
|
Index int // points to current grid
|
|
Width, Height, Cellsize, Density int // measurements
|
|
ScreenWidth, ScreenHeight int
|
|
Generations int // Stats
|
|
Black, White, Grey, Beige color.RGBA
|
|
TPG int // ticks per generation/game speed, 1==max
|
|
TicksElapsed int // tick counter for game speed
|
|
Debug, Paused, Empty, Invert bool // game modi
|
|
ShowEvolution, NoGrid, RunOneStep bool // flags
|
|
Rule *Rule // which rule to use, default: B3/S23
|
|
Tiles Images // pre-computed tiles for dead and alife cells
|
|
}
|
|
|
|
func (game *Game) Layout(outsideWidth, outsideHeight int) (int, int) {
|
|
return game.ScreenWidth, game.ScreenHeight
|
|
}
|
|
|
|
func (game *Game) CheckRule(state, neighbors int) int {
|
|
var nextstate int
|
|
|
|
// The standard Game of Life is symbolized in rule-string notation
|
|
// as B3/S23 (23/3 here). A cell is born if it has exactly three
|
|
// neighbors, survives if it has two or three living neighbors,
|
|
// and dies otherwise. The first number, or list of numbers, is
|
|
// what is required for a dead cell to be born.
|
|
|
|
if state == 0 && Contains(game.Rule.Birth, neighbors) {
|
|
nextstate = 1
|
|
} else if state == 1 && Contains(game.Rule.Death, neighbors) {
|
|
nextstate = 1
|
|
} else {
|
|
nextstate = 0
|
|
}
|
|
|
|
return nextstate
|
|
}
|
|
|
|
// find an item in a list, generic variant
|
|
func Contains[E comparable](s []E, v E) bool {
|
|
for _, vs := range s {
|
|
if v == vs {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// Update all cells according to the current rule
|
|
func (game *Game) UpdateCells() {
|
|
// count ticks so we know when to actually run
|
|
game.TicksElapsed++
|
|
|
|
if game.TPG > game.TicksElapsed {
|
|
// need to sleep a little more
|
|
return
|
|
}
|
|
|
|
// next grid index, we just xor 0|1 to 1|0
|
|
next := game.Index ^ 1
|
|
|
|
// compute life status of cells
|
|
for y := 0; y < game.Height; y++ {
|
|
for x := 0; x < game.Width; x++ {
|
|
state := game.Grids[game.Index].Data[y][x] // 0|1 == dead or alive
|
|
neighbors := CountNeighbors(game, x, y) // alive neighbor count
|
|
|
|
// actually apply the current rules
|
|
nextstate := game.CheckRule(state, neighbors)
|
|
|
|
// change state of current cell in next grid
|
|
game.Grids[next].Data[y][x] = nextstate
|
|
|
|
if state == 1 {
|
|
game.History.Data[y][x] = 1
|
|
}
|
|
}
|
|
}
|
|
|
|
// switch grid for rendering
|
|
game.Index ^= 1
|
|
|
|
// global stats counter
|
|
game.Generations++
|
|
|
|
if game.RunOneStep {
|
|
// setp-wise mode, halt the game
|
|
game.RunOneStep = false
|
|
}
|
|
|
|
// reset speed counter
|
|
game.TicksElapsed = 0
|
|
}
|
|
|
|
// a GOL rule
|
|
type Rule struct {
|
|
Birth []int
|
|
Death []int
|
|
}
|
|
|
|
// parse one part of a GOL rule into rule slice
|
|
func NumbersToList(numbers string) []int {
|
|
list := []int{}
|
|
|
|
items := strings.Split(numbers, "")
|
|
for _, item := range items {
|
|
num, err := strconv.Atoi(item)
|
|
if err != nil {
|
|
log.Fatalf("failed to parse game rule part <%s>: %s", numbers, err)
|
|
}
|
|
|
|
list = append(list, num)
|
|
}
|
|
|
|
return list
|
|
}
|
|
|
|
// parse GOL rule, used in CheckRule()
|
|
func ParseGameRule(rule string) *Rule {
|
|
parts := strings.Split(rule, "/")
|
|
|
|
if len(parts) < 2 {
|
|
log.Fatalf("Invalid game rule <%s>", rule)
|
|
}
|
|
|
|
golrule := &Rule{}
|
|
|
|
for _, part := range parts {
|
|
if part[0] == 'B' {
|
|
golrule.Birth = NumbersToList(part[1:])
|
|
} else {
|
|
golrule.Death = NumbersToList(part[1:])
|
|
}
|
|
}
|
|
|
|
return golrule
|
|
}
|
|
|
|
// check user input
|
|
func (game *Game) CheckInput() {
|
|
if inpututil.IsKeyJustPressed(ebiten.KeyQ) {
|
|
os.Exit(0)
|
|
}
|
|
|
|
if inpututil.IsKeyJustPressed(ebiten.KeySpace) || inpututil.IsKeyJustPressed(ebiten.KeyEnter) {
|
|
game.Paused = !game.Paused
|
|
}
|
|
|
|
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonLeft) {
|
|
ToggleCell(game, Alive)
|
|
game.Paused = true // drawing while running makes no sense
|
|
}
|
|
|
|
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonRight) {
|
|
ToggleCell(game, Dead)
|
|
game.Paused = true // drawing while running makes no sense
|
|
}
|
|
|
|
if inpututil.IsKeyJustPressed(ebiten.KeyArrowDown) {
|
|
if game.TPG < 120 {
|
|
game.TPG++
|
|
}
|
|
}
|
|
|
|
if inpututil.IsKeyJustPressed(ebiten.KeyArrowUp) {
|
|
if game.TPG > 1 {
|
|
game.TPG--
|
|
}
|
|
}
|
|
|
|
if inpututil.IsKeyJustPressed(ebiten.KeyPageDown) {
|
|
if game.TPG <= 115 {
|
|
game.TPG += 5
|
|
}
|
|
}
|
|
|
|
if inpututil.IsKeyJustPressed(ebiten.KeyPageUp) {
|
|
switch {
|
|
case game.TPG > 5:
|
|
game.TPG -= 5
|
|
case game.TPG <= 5:
|
|
game.TPG = 1
|
|
}
|
|
}
|
|
|
|
if game.Paused {
|
|
if inpututil.IsKeyJustPressed(ebiten.KeyN) {
|
|
game.RunOneStep = true
|
|
}
|
|
}
|
|
}
|
|
|
|
func (game *Game) Update() error {
|
|
game.CheckInput()
|
|
|
|
if !game.Paused || game.RunOneStep {
|
|
game.UpdateCells()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// set a cell to alive or dead
|
|
func ToggleCell(game *Game, alive int) {
|
|
xPX, yPX := ebiten.CursorPosition()
|
|
x := xPX / game.Cellsize
|
|
y := yPX / game.Cellsize
|
|
|
|
//fmt.Printf("cell at %d,%d\n", x, y)
|
|
|
|
game.Grids[game.Index].Data[y][x] = alive
|
|
game.History.Data[y][x] = 1
|
|
}
|
|
|
|
// draw the new grid state
|
|
func (game *Game) Draw(screen *ebiten.Image) {
|
|
// we fill the whole screen with a background color, the cells
|
|
// themselfes will be 1px smaller as their nominal size, producing
|
|
// a nice grey grid with grid lines
|
|
op := &ebiten.DrawImageOptions{}
|
|
if game.NoGrid {
|
|
screen.Fill(game.White)
|
|
} else {
|
|
screen.Fill(game.Grey)
|
|
}
|
|
|
|
for y := 0; y < game.Height; y++ {
|
|
for x := 0; x < game.Width; x++ {
|
|
op.GeoM.Reset()
|
|
op.GeoM.Translate(float64(x*game.Cellsize), float64(y*game.Cellsize))
|
|
|
|
switch game.Grids[game.Index].Data[y][x] {
|
|
case 1:
|
|
|
|
screen.DrawImage(game.Tiles.Black, op)
|
|
case 0:
|
|
if game.History.Data[y][x] == 1 && game.ShowEvolution {
|
|
screen.DrawImage(game.Tiles.Beige, op)
|
|
} else {
|
|
screen.DrawImage(game.Tiles.White, op)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if game.Debug {
|
|
paused := ""
|
|
if game.Paused {
|
|
paused = "-- paused --"
|
|
}
|
|
|
|
ebitenutil.DebugPrint(
|
|
screen,
|
|
fmt.Sprintf("FPS: %0.2f, TPG: %d, Mem: %0.2f MB, Generations: %d %s",
|
|
ebiten.ActualTPS(), game.TPG, GetMem(), game.Generations, paused),
|
|
)
|
|
}
|
|
}
|
|
|
|
func GetMem() float64 {
|
|
var m runtime.MemStats
|
|
runtime.ReadMemStats(&m)
|
|
|
|
return float64(m.Alloc) / 1024 / 1024
|
|
}
|
|
|
|
func (game *Game) InitGrid() {
|
|
grid := &Grid{Data: make([][]int, game.Height)}
|
|
gridb := &Grid{Data: make([][]int, game.Height)}
|
|
history := &Grid{Data: make([][]int, game.Height)}
|
|
|
|
for y := 0; y < game.Height; y++ {
|
|
grid.Data[y] = make([]int, game.Width)
|
|
gridb.Data[y] = make([]int, game.Width)
|
|
history.Data[y] = make([]int, game.Width)
|
|
if !game.Empty {
|
|
for x := 0; x < game.Width; x++ {
|
|
if rand.Intn(game.Density) == 1 {
|
|
history.Data[y][x] = 1
|
|
grid.Data[y][x] = 1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
game.Grids = []*Grid{
|
|
grid,
|
|
gridb,
|
|
}
|
|
|
|
game.History = history
|
|
}
|
|
|
|
// fill a cell with the given color
|
|
func FillCell(tile *ebiten.Image, cellsize int, col color.RGBA) {
|
|
vector.DrawFilledRect(
|
|
tile,
|
|
float32(1),
|
|
float32(1),
|
|
float32(cellsize-1),
|
|
float32(cellsize-1),
|
|
col, false,
|
|
)
|
|
}
|
|
|
|
// prepare tile images
|
|
func (game *Game) InitTiles() {
|
|
game.Black = color.RGBA{0, 0, 0, 0xff}
|
|
game.White = color.RGBA{200, 200, 200, 0xff}
|
|
game.Grey = color.RGBA{128, 128, 128, 0xff}
|
|
game.Beige = color.RGBA{0xff, 0xf8, 0xdc, 0xff}
|
|
|
|
if game.Invert {
|
|
game.White = color.RGBA{0, 0, 0, 0xff}
|
|
game.Black = color.RGBA{200, 200, 200, 0xff}
|
|
//game.Beige = color.RGBA{0x8b, 0x1a, 0x1a, 0xff}
|
|
game.Beige = color.RGBA{0x30, 0x1c, 0x11, 0xff}
|
|
}
|
|
|
|
game.Tiles.Beige = ebiten.NewImage(game.Cellsize, game.Cellsize)
|
|
game.Tiles.Black = ebiten.NewImage(game.Cellsize, game.Cellsize)
|
|
game.Tiles.White = ebiten.NewImage(game.Cellsize, game.Cellsize)
|
|
|
|
cellsize := game.ScreenWidth / game.Cellsize
|
|
FillCell(game.Tiles.Beige, cellsize, game.Beige)
|
|
FillCell(game.Tiles.Black, cellsize, game.Black)
|
|
FillCell(game.Tiles.White, cellsize, game.White)
|
|
}
|
|
|
|
func (game *Game) Init() {
|
|
// setup the game
|
|
game.ScreenWidth = game.Cellsize * game.Width
|
|
game.ScreenHeight = game.Cellsize * game.Height
|
|
|
|
game.InitGrid()
|
|
game.InitTiles()
|
|
|
|
game.Index = 0
|
|
game.TicksElapsed = 0
|
|
}
|
|
|
|
// count the living neighbors of a cell
|
|
func CountNeighbors(game *Game, x, y int) int {
|
|
sum := 0
|
|
|
|
// so we look ad all 8 neighbors surrounding us. In case we are on
|
|
// an edge, then we'll look at the neighbor on the other side of
|
|
// the grid, thus wrapping lookahead around.
|
|
for i := -1; i < 2; i++ {
|
|
for j := -1; j < 2; j++ {
|
|
col := (x + i + game.Width) % game.Width
|
|
row := (y + j + game.Height) % game.Height
|
|
sum += game.Grids[game.Index].Data[row][col]
|
|
}
|
|
}
|
|
|
|
// don't count ourselfes though
|
|
sum -= game.Grids[game.Index].Data[y][x]
|
|
|
|
return sum
|
|
}
|
|
|
|
func main() {
|
|
game := &Game{}
|
|
showversion := false
|
|
var rule string
|
|
|
|
pflag.IntVarP(&game.Width, "width", "W", 40, "grid width in cells")
|
|
pflag.IntVarP(&game.Height, "height", "H", 40, "grid height in cells")
|
|
pflag.IntVarP(&game.Cellsize, "cellsize", "c", 8, "cell size in pixels")
|
|
pflag.IntVarP(&game.Density, "density", "D", 10, "density of random cells")
|
|
pflag.IntVarP(&game.TPG, "ticks-per-generation", "t", 10, "game speed: the higher the slower (default: 10)")
|
|
|
|
pflag.StringVarP(&rule, "rule", "r", "B3/S23", "game rule")
|
|
|
|
pflag.BoolVarP(&showversion, "version", "v", false, "show version")
|
|
pflag.BoolVarP(&game.Paused, "paused", "p", false, "do not start simulation (use space to start)")
|
|
pflag.BoolVarP(&game.Debug, "debug", "d", false, "show debug info")
|
|
pflag.BoolVarP(&game.NoGrid, "nogrid", "n", false, "do not draw grid lines")
|
|
pflag.BoolVarP(&game.Empty, "empty", "e", false, "start with an empty screen")
|
|
pflag.BoolVarP(&game.Invert, "invert", "i", false, "invert colors (dead cell: black)")
|
|
pflag.BoolVarP(&game.ShowEvolution, "show-evolution", "s", false, "show evolution tracks")
|
|
|
|
pflag.Parse()
|
|
|
|
if showversion {
|
|
fmt.Printf("This is gameoflife version %s\n", VERSION)
|
|
os.Exit(0)
|
|
}
|
|
|
|
game.Rule = ParseGameRule(rule)
|
|
|
|
repr.Print(game.TPG)
|
|
game.Init()
|
|
|
|
ebiten.SetWindowSize(game.ScreenWidth, game.ScreenHeight)
|
|
ebiten.SetWindowTitle("Game of life")
|
|
ebiten.SetWindowResizingMode(ebiten.WindowResizingModeEnabled)
|
|
|
|
if err := ebiten.RunGame(game); err != nil {
|
|
log.Fatal(err)
|
|
}
|
|
}
|