Files
golsky/game.go

487 lines
12 KiB
Go

package main
import (
"fmt"
"image/color"
"log"
"math/rand"
"os"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"github.com/hajimehoshi/ebiten/v2/inpututil"
"github.com/hajimehoshi/ebiten/v2/vector"
"github.com/tlinden/gameoflife/rle"
"golang.org/x/image/math/f64"
)
type Images struct {
Black, White, Beige *ebiten.Image
}
type Game struct {
Grids []*Grid // 2 grids: one current, one next
History *Grid // holds state of past dead cells for evolution tracks
Index int // points to current grid
Width, Height, Cellsize, Density int // measurements
ScreenWidth, ScreenHeight int
Generations int64 // Stats
Black, White, Grey, Beige color.RGBA
TPG int // ticks per generation/game speed, 1==max
TicksElapsed int // tick counter for game speed
Debug, Paused, Empty, Invert bool // game modi
ShowEvolution, NoGrid, RunOneStep bool // flags
Rule *Rule // which rule to use, default: B3/S23
Tiles Images // pre-computed tiles for dead and alife cells
RLE *rle.RLE // loaded GOL pattern from RLE file
Camera Camera // for zoom+move
World *ebiten.Image // actual image we render to
WheelTurned bool // when user turns wheel multiple times, zoom faster
Dragging bool // middle mouse is pressed, move canvas
LastCursorPos []int // used to check if the user is dragging
Statefile string // load game state from it if non-nil
}
func (game *Game) Layout(outsideWidth, outsideHeight int) (int, int) {
return game.ScreenWidth, game.ScreenHeight
}
func (game *Game) CheckRule(state, neighbors int) int {
var nextstate int
// The standard Game of Life is symbolized in rule-string notation
// as B3/S23 (23/3 here). A cell is born if it has exactly three
// neighbors, survives if it has two or three living neighbors,
// and dies otherwise. The first number, or list of numbers, is
// what is required for a dead cell to be born.
if state == 0 && Contains(game.Rule.Birth, neighbors) {
nextstate = 1
} else if state == 1 && Contains(game.Rule.Death, neighbors) {
nextstate = 1
} else {
nextstate = 0
}
return nextstate
}
// Update all cells according to the current rule
func (game *Game) UpdateCells() {
// count ticks so we know when to actually run
game.TicksElapsed++
if game.TPG > game.TicksElapsed {
// need to sleep a little more
return
}
// next grid index, we just xor 0|1 to 1|0
next := game.Index ^ 1
// compute life status of cells
for y := 0; y < game.Height; y++ {
for x := 0; x < game.Width; x++ {
state := game.Grids[game.Index].Data[y][x] // 0|1 == dead or alive
neighbors := game.CountNeighbors(x, y) // alive neighbor count
// actually apply the current rules
nextstate := game.CheckRule(state, neighbors)
// change state of current cell in next grid
game.Grids[next].Data[y][x] = nextstate
if state == 1 {
game.History.Data[y][x] = 1
}
}
}
// switch grid for rendering
game.Index ^= 1
// global stats counter
game.Generations++
if game.RunOneStep {
// setp-wise mode, halt the game
game.RunOneStep = false
}
// reset speed counter
game.TicksElapsed = 0
}
// check user input
func (game *Game) CheckInput() {
if inpututil.IsKeyJustPressed(ebiten.KeyQ) {
os.Exit(0)
}
if inpututil.IsKeyJustPressed(ebiten.KeySpace) || inpututil.IsKeyJustPressed(ebiten.KeyEnter) {
game.Paused = !game.Paused
}
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonLeft) {
game.ToggleCellOnCursorPos(Alive)
game.Paused = true // drawing while running makes no sense
}
if ebiten.IsMouseButtonPressed(ebiten.MouseButtonRight) {
game.ToggleCellOnCursorPos(Dead)
game.Paused = true // drawing while running makes no sense
}
if ebiten.IsKeyPressed(ebiten.KeyPageDown) {
if game.TPG < 120 {
game.TPG++
}
}
if ebiten.IsKeyPressed(ebiten.KeyPageUp) {
if game.TPG > 1 {
game.TPG--
}
}
if inpututil.IsKeyJustPressed(ebiten.KeyS) {
filename := GetFilename(game.Generations)
err := game.Grids[game.Index].SaveState(filename)
if err != nil {
log.Printf("failed to save game state to %s: %s", filename, err)
}
log.Printf("saved game state to %s at generation %d\n", filename, game.Generations)
}
if game.Paused {
if inpututil.IsKeyJustPressed(ebiten.KeyN) {
game.RunOneStep = true
}
}
}
// Check dragging input. move the canvas with the mouse while pressing
// the middle mouse button, zoom in and out using the wheel.
func (game *Game) CheckDraggingInput() {
// move canvas
if game.Dragging && !ebiten.IsMouseButtonPressed(ebiten.MouseButton1) {
// release
game.Dragging = false
}
if !game.Dragging && ebiten.IsMouseButtonPressed(ebiten.MouseButton1) {
// start dragging
game.Dragging = true
game.LastCursorPos[0], game.LastCursorPos[1] = ebiten.CursorPosition()
}
if game.Dragging {
x, y := ebiten.CursorPosition()
if x != game.LastCursorPos[0] || y != game.LastCursorPos[1] {
// actually drag by mouse cursor pos diff to last cursor pos
game.Camera.Position[0] -= float64(x - game.LastCursorPos[0])
game.Camera.Position[1] -= float64(y - game.LastCursorPos[1])
}
game.LastCursorPos[0], game.LastCursorPos[1] = ebiten.CursorPosition()
}
// also support the arrow keys to move the canvas
if ebiten.IsKeyPressed(ebiten.KeyArrowLeft) {
game.Camera.Position[0] -= 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowRight) {
game.Camera.Position[0] += 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowUp) {
game.Camera.Position[1] -= 1
}
if ebiten.IsKeyPressed(ebiten.KeyArrowDown) {
game.Camera.Position[1] += 1
}
// Zoom
_, dy := ebiten.Wheel()
step := 1
if game.WheelTurned {
// if keep scrolling the wheel, zoom faster
step = 50
} else {
game.WheelTurned = false
}
if dy < 0 {
if game.Camera.ZoomFactor > -2400 {
game.Camera.ZoomFactor -= step
}
}
if dy > 0 {
if game.Camera.ZoomFactor < 2400 {
game.Camera.ZoomFactor += step
}
}
if inpututil.IsKeyJustPressed(ebiten.KeyEscape) {
game.Camera.Reset()
}
}
func (game *Game) Update() error {
game.CheckInput()
game.CheckDraggingInput()
if !game.Paused || game.RunOneStep {
game.UpdateCells()
}
return nil
}
// set a cell to alive or dead
func (game *Game) ToggleCellOnCursorPos(alive int) {
xPX, yPX := ebiten.CursorPosition()
x := xPX / game.Cellsize
y := yPX / game.Cellsize
//fmt.Printf("cell at %d,%d\n", x, y)
game.Grids[game.Index].Data[y][x] = alive
game.History.Data[y][x] = 1
}
// draw the new grid state
func (game *Game) Draw(screen *ebiten.Image) {
// we fill the whole screen with a background color, the cells
// themselfes will be 1px smaller as their nominal size, producing
// a nice grey grid with grid lines
op := &ebiten.DrawImageOptions{}
if game.NoGrid {
game.World.Fill(game.White)
} else {
game.World.Fill(game.Grey)
}
for y := 0; y < game.Height; y++ {
for x := 0; x < game.Width; x++ {
op.GeoM.Reset()
op.GeoM.Translate(float64(x*game.Cellsize), float64(y*game.Cellsize))
switch game.Grids[game.Index].Data[y][x] {
case 1:
game.World.DrawImage(game.Tiles.Black, op)
case 0:
if game.History.Data[y][x] == 1 && game.ShowEvolution {
game.World.DrawImage(game.Tiles.Beige, op)
} else {
game.World.DrawImage(game.Tiles.White, op)
}
}
}
}
game.Camera.Render(game.World, screen)
//worldX, worldY := game.Camera.ScreenToWorld(ebiten.CursorPosition())
if game.Debug {
paused := ""
if game.Paused {
paused = "-- paused --"
}
ebitenutil.DebugPrint(
screen,
fmt.Sprintf("FPS: %0.2f, TPG: %d, Mem: %0.2f MB, Generations: %d %s",
ebiten.ActualTPS(), game.TPG, GetMem(), game.Generations, paused),
)
}
}
// FIXME: move these into Grid
// load a pre-computed pattern from RLE file
func (game *Game) InitPattern() {
if game.RLE != nil {
startX := (game.Width / 2) - (game.RLE.Width / 2)
startY := (game.Height / 2) - (game.RLE.Height / 2)
var y, x int
for rowIndex, patternRow := range game.RLE.Pattern {
for colIndex := range patternRow {
if game.RLE.Pattern[rowIndex][colIndex] > 0 {
x = colIndex + startX
y = rowIndex + startY
game.History.Data[y][x] = 1
game.Grids[0].Data[y][x] = 1
}
}
}
}
}
// initialize playing field/grid
func (game *Game) InitGrid(grid *Grid) {
if grid != nil {
// use pre-loaded grid
game.Grids = []*Grid{
grid,
NewGrid(grid.Width, grid.Height),
}
game.History = NewGrid(grid.Width, grid.Height)
return
}
grida := NewGrid(game.Width, game.Height)
gridb := NewGrid(game.Width, game.Height)
history := NewGrid(game.Width, game.Height)
for y := 0; y < game.Height; y++ {
if !game.Empty {
for x := 0; x < game.Width; x++ {
if rand.Intn(game.Density) == 1 {
history.Data[y][x] = 1
grida.Data[y][x] = 1
}
}
}
}
game.Grids = []*Grid{
grida,
gridb,
}
game.History = history
}
func (game *Game) _InitGrid(grid *Grid) {
grida := &Grid{Data: make([][]int, game.Height)}
gridb := &Grid{Data: make([][]int, game.Height)}
history := &Grid{Data: make([][]int, game.Height)}
for y := 0; y < game.Height; y++ {
grida.Data[y] = make([]int, game.Width)
gridb.Data[y] = make([]int, game.Width)
history.Data[y] = make([]int, game.Width)
if !game.Empty {
for x := 0; x < game.Width; x++ {
if rand.Intn(game.Density) == 1 {
history.Data[y][x] = 1
grida.Data[y][x] = 1
}
}
}
}
game.Grids = []*Grid{
grida,
gridb,
}
game.History = history
}
// prepare tile images
func (game *Game) InitTiles() {
game.Black = color.RGBA{0, 0, 0, 0xff}
game.White = color.RGBA{200, 200, 200, 0xff}
game.Grey = color.RGBA{128, 128, 128, 0xff}
game.Beige = color.RGBA{0xff, 0xf8, 0xdc, 0xff}
if game.Invert {
game.White = color.RGBA{0, 0, 0, 0xff}
game.Black = color.RGBA{200, 200, 200, 0xff}
game.Beige = color.RGBA{0x30, 0x1c, 0x11, 0xff}
}
game.Tiles.Beige = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Tiles.Black = ebiten.NewImage(game.Cellsize, game.Cellsize)
game.Tiles.White = ebiten.NewImage(game.Cellsize, game.Cellsize)
cellsize := game.ScreenWidth / game.Cellsize
FillCell(game.Tiles.Beige, cellsize, game.Beige)
FillCell(game.Tiles.Black, cellsize, game.Black)
FillCell(game.Tiles.White, cellsize, game.White)
}
func (game *Game) Init() {
// setup the game
var grid *Grid
if game.Statefile != "" {
g, err := LoadState(game.Statefile)
if err != nil {
log.Fatalf("failed to load game state: %s", err)
}
grid = g
game.Width = grid.Width
game.Height = grid.Height
}
game.ScreenWidth = game.Cellsize * game.Width
game.ScreenHeight = game.Cellsize * game.Height
game.Camera = Camera{
ViewPort: f64.Vec2{
float64(game.ScreenWidth),
float64(game.ScreenHeight),
},
}
game.World = ebiten.NewImage(game.ScreenWidth, game.ScreenHeight)
game.InitGrid(grid)
game.InitPattern()
game.InitTiles()
game.Index = 0
game.TicksElapsed = 0
game.LastCursorPos = make([]int, 2)
}
// count the living neighbors of a cell
func (game *Game) CountNeighbors(x, y int) int {
sum := 0
// so we look ad all 8 neighbors surrounding us. In case we are on
// an edge, then we'll look at the neighbor on the other side of
// the grid, thus wrapping lookahead around.
for i := -1; i < 2; i++ {
for j := -1; j < 2; j++ {
col := (x + i + game.Width) % game.Width
row := (y + j + game.Height) % game.Height
sum += game.Grids[game.Index].Data[row][col]
}
}
// don't count ourselfes though
sum -= game.Grids[game.Index].Data[y][x]
return sum
}
// fill a cell with the given color
func FillCell(tile *ebiten.Image, cellsize int, col color.RGBA) {
vector.DrawFilledRect(
tile,
float32(1),
float32(1),
float32(cellsize-1),
float32(cellsize-1),
col, false,
)
}