This commit is contained in:
2024-05-14 12:10:58 +02:00
parent a9bb79b01c
commit 59911aebb9
645 changed files with 263320 additions and 0 deletions

21
vendor/github.com/zclconf/go-cty/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2017-2018 Martin Atkins
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

128
vendor/github.com/zclconf/go-cty/cty/capsule.go generated vendored Normal file
View File

@@ -0,0 +1,128 @@
package cty
import (
"fmt"
"reflect"
)
type capsuleType struct {
typeImplSigil
Name string
GoType reflect.Type
Ops *CapsuleOps
}
func (t *capsuleType) Equals(other Type) bool {
if otherP, ok := other.typeImpl.(*capsuleType); ok {
// capsule types compare by pointer identity
return otherP == t
}
return false
}
func (t *capsuleType) FriendlyName(mode friendlyTypeNameMode) string {
return t.Name
}
func (t *capsuleType) GoString() string {
impl := t.Ops.TypeGoString
if impl == nil {
// To get a useful representation of our native type requires some
// shenanigans.
victimVal := reflect.Zero(t.GoType)
if t.Ops == noCapsuleOps {
return fmt.Sprintf("cty.Capsule(%q, reflect.TypeOf(%#v))", t.Name, victimVal.Interface())
} else {
// Including the operations in the output will make this _very_ long,
// so in practice any capsule type with ops ought to provide a
// TypeGoString function to override this with something more
// reasonable.
return fmt.Sprintf("cty.CapsuleWithOps(%q, reflect.TypeOf(%#v), %#v)", t.Name, victimVal.Interface(), t.Ops)
}
}
return impl(t.GoType)
}
// Capsule creates a new Capsule type.
//
// A Capsule type is a special type that can be used to transport arbitrary
// Go native values of a given type through the cty type system. A language
// that uses cty as its type system might, for example, provide functions
// that return capsule-typed values and then other functions that operate
// on those values.
//
// From cty's perspective, Capsule types have a few interesting characteristics,
// described in the following paragraphs.
//
// Each capsule type has an associated Go native type that it is able to
// transport. Capsule types compare by identity, so each call to the
// Capsule function creates an entirely-distinct cty Type, even if two calls
// use the same native type.
//
// Each capsule-typed value contains a pointer to a value of the given native
// type. A capsule-typed value by default supports no operations except
// equality, and equality is implemented by pointer identity of the
// encapsulated pointer. A capsule type can optionally have its own
// implementations of certain operations if it is created with CapsuleWithOps
// instead of Capsule.
//
// The given name is used as the new type's "friendly name". This can be any
// string in principle, but will usually be a short, all-lowercase name aimed
// at users of the embedding language (i.e. not mention Go-specific details)
// and will ideally not create ambiguity with any predefined cty type.
//
// Capsule types are never introduced by any standard cty operation, so a
// calling application opts in to including them within its own type system
// by creating them and introducing them via its own functions. At that point,
// the application is responsible for dealing with any capsule-typed values
// that might be returned.
func Capsule(name string, nativeType reflect.Type) Type {
return Type{
&capsuleType{
Name: name,
GoType: nativeType,
Ops: noCapsuleOps,
},
}
}
// CapsuleWithOps is like Capsule except the caller may provide an object
// representing some overloaded operation implementations to associate with
// the given capsule type.
//
// All of the other caveats and restrictions for capsule types still apply, but
// overloaded operations can potentially help a capsule type participate better
// in cty operations.
func CapsuleWithOps(name string, nativeType reflect.Type, ops *CapsuleOps) Type {
// Copy the operations to make sure the caller can't modify them after
// we're constructed.
ourOps := *ops
ourOps.assertValid()
return Type{
&capsuleType{
Name: name,
GoType: nativeType,
Ops: &ourOps,
},
}
}
// IsCapsuleType returns true if this type is a capsule type, as created
// by cty.Capsule .
func (t Type) IsCapsuleType() bool {
_, ok := t.typeImpl.(*capsuleType)
return ok
}
// EncapsulatedType returns the encapsulated native type of a capsule type,
// or panics if the receiver is not a Capsule type.
//
// Is IsCapsuleType to determine if this method is safe to call.
func (t Type) EncapsulatedType() reflect.Type {
impl, ok := t.typeImpl.(*capsuleType)
if !ok {
panic("not a capsule type")
}
return impl.GoType
}

144
vendor/github.com/zclconf/go-cty/cty/capsule_ops.go generated vendored Normal file
View File

@@ -0,0 +1,144 @@
package cty
import (
"reflect"
)
// CapsuleOps represents a set of overloaded operations for a capsule type.
//
// Each field is a reference to a function that can either be nil or can be
// set to an implementation of the corresponding operation. If an operation
// function is nil then it isn't supported for the given capsule type.
type CapsuleOps struct {
// GoString provides the GoString implementation for values of the
// corresponding type. Conventionally this should return a string
// representation of an expression that would produce an equivalent
// value.
GoString func(val interface{}) string
// TypeGoString provides the GoString implementation for the corresponding
// capsule type itself.
TypeGoString func(goTy reflect.Type) string
// Equals provides the implementation of the Equals operation. This is
// called only with known, non-null values of the corresponding type,
// but if the corresponding type is a compound type then it must be
// ready to detect and handle nested unknown or null values, usually
// by recursively calling Value.Equals on those nested values.
//
// The result value must always be of type cty.Bool, or the Equals
// operation will panic.
//
// If RawEquals is set without also setting Equals, the RawEquals
// implementation will be used as a fallback implementation. That fallback
// is appropriate only for leaf types that do not contain any nested
// cty.Value that would need to distinguish Equals vs. RawEquals for their
// own equality.
//
// If RawEquals is nil then Equals must also be nil, selecting the default
// pointer-identity comparison instead.
Equals func(a, b interface{}) Value
// RawEquals provides the implementation of the RawEquals operation.
// This is called only with known, non-null values of the corresponding
// type, but if the corresponding type is a compound type then it must be
// ready to detect and handle nested unknown or null values, usually
// by recursively calling Value.RawEquals on those nested values.
//
// If RawEquals is nil, values of the corresponding type are compared by
// pointer identity of the encapsulated value.
RawEquals func(a, b interface{}) bool
// HashKey provides a hashing function for values of the corresponding
// capsule type. If defined, cty will use the resulting hashes as part
// of the implementation of sets whose element type is or contains the
// corresponding capsule type.
//
// If a capsule type defines HashValue then the function _must_ return
// an equal hash value for any two values that would cause Equals or
// RawEquals to return true when given those values. If a given type
// does not uphold that assumption then sets including this type will
// not behave correctly.
HashKey func(v interface{}) string
// ConversionFrom can provide conversions from the corresponding type to
// some other type when values of the corresponding type are used with
// the "convert" package. (The main cty package does not use this operation.)
//
// This function itself returns a function, allowing it to switch its
// behavior depending on the given source type. Return nil to indicate
// that no such conversion is available.
ConversionFrom func(src Type) func(interface{}, Path) (Value, error)
// ConversionTo can provide conversions to the corresponding type from
// some other type when values of the corresponding type are used with
// the "convert" package. (The main cty package does not use this operation.)
//
// This function itself returns a function, allowing it to switch its
// behavior depending on the given destination type. Return nil to indicate
// that no such conversion is available.
ConversionTo func(dst Type) func(Value, Path) (interface{}, error)
// ExtensionData is an extension point for applications that wish to
// create their own extension features using capsule types.
//
// The key argument is any value that can be compared with Go's ==
// operator, but should be of a named type in a package belonging to the
// application defining the key. An ExtensionData implementation must
// check to see if the given key is familar to it, and if so return a
// suitable value for the key.
//
// If the given key is unrecognized, the ExtensionData function must
// return a nil interface. (Importantly, not an interface containing a nil
// pointer of some other type.)
// The common implementation of ExtensionData is a single switch statement
// over "key" which has a default case returning nil.
//
// The meaning of any given key is entirely up to the application that
// defines it. Applications consuming ExtensionData from capsule types
// should do so defensively: if the result of ExtensionData is not valid,
// prefer to ignore it or gracefully produce an error rather than causing
// a panic.
ExtensionData func(key interface{}) interface{}
}
// noCapsuleOps is a pointer to a CapsuleOps with no functions set, which
// is used as the default operations value when a type is created using
// the Capsule function.
var noCapsuleOps = &CapsuleOps{}
func (ops *CapsuleOps) assertValid() {
if ops.RawEquals == nil && ops.Equals != nil {
panic("Equals cannot be set without RawEquals")
}
}
// CapsuleOps returns a pointer to the CapsuleOps value for a capsule type,
// or panics if the receiver is not a capsule type.
//
// The caller must not modify the CapsuleOps.
func (ty Type) CapsuleOps() *CapsuleOps {
if !ty.IsCapsuleType() {
panic("not a capsule-typed value")
}
return ty.typeImpl.(*capsuleType).Ops
}
// CapsuleExtensionData is a convenience interface to the ExtensionData
// function that can be optionally implemented for a capsule type. It will
// check to see if the underlying type implements ExtensionData and call it
// if so. If not, it will return nil to indicate that the given key is not
// supported.
//
// See the documentation for CapsuleOps.ExtensionData for more information
// on the purpose of and usage of this mechanism.
//
// If CapsuleExtensionData is called on a non-capsule type then it will panic.
func (ty Type) CapsuleExtensionData(key interface{}) interface{} {
ops := ty.CapsuleOps()
if ops.ExtensionData == nil {
return nil
}
return ops.ExtensionData(key)
}

34
vendor/github.com/zclconf/go-cty/cty/collection.go generated vendored Normal file
View File

@@ -0,0 +1,34 @@
package cty
import (
"errors"
)
type collectionTypeImpl interface {
ElementType() Type
}
// IsCollectionType returns true if the given type supports the operations
// that are defined for all collection types.
func (t Type) IsCollectionType() bool {
_, ok := t.typeImpl.(collectionTypeImpl)
return ok
}
// ElementType returns the element type of the receiver if it is a collection
// type, or panics if it is not. Use IsCollectionType first to test whether
// this method will succeed.
func (t Type) ElementType() Type {
if ct, ok := t.typeImpl.(collectionTypeImpl); ok {
return ct.ElementType()
}
panic(errors.New("not a collection type"))
}
// ElementCallback is a callback type used for iterating over elements of
// collections and attributes of objects.
//
// The types of key and value depend on what type is being iterated over.
// Return true to stop iterating after the current element, or false to
// continue iterating.
type ElementCallback func(key Value, val Value) (stop bool)

View File

@@ -0,0 +1,165 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
// compareTypes implements a preference order for unification.
//
// The result of this method is not useful for anything other than unification
// preferences, since it assumes that the caller will verify that any suggested
// conversion is actually possible and it is thus able to to make certain
// optimistic assumptions.
func compareTypes(a cty.Type, b cty.Type) int {
// DynamicPseudoType always has lowest preference, because anything can
// convert to it (it acts as a placeholder for "any type") and we want
// to optimistically assume that any dynamics will converge on matching
// their neighbors.
if a == cty.DynamicPseudoType || b == cty.DynamicPseudoType {
if a != cty.DynamicPseudoType {
return -1
}
if b != cty.DynamicPseudoType {
return 1
}
return 0
}
if a.IsPrimitiveType() && b.IsPrimitiveType() {
// String is a supertype of all primitive types, because we can
// represent all primitive values as specially-formatted strings.
if a == cty.String || b == cty.String {
if a != cty.String {
return 1
}
if b != cty.String {
return -1
}
return 0
}
}
if a.IsListType() && b.IsListType() {
return compareTypes(a.ElementType(), b.ElementType())
}
if a.IsSetType() && b.IsSetType() {
return compareTypes(a.ElementType(), b.ElementType())
}
if a.IsMapType() && b.IsMapType() {
return compareTypes(a.ElementType(), b.ElementType())
}
// From this point on we may have swapped the two items in order to
// simplify our cases. Therefore any non-zero return after this point
// must be multiplied by "swap" to potentially invert the return value
// if needed.
swap := 1
switch {
case a.IsTupleType() && b.IsListType():
fallthrough
case a.IsObjectType() && b.IsMapType():
fallthrough
case a.IsSetType() && b.IsTupleType():
fallthrough
case a.IsSetType() && b.IsListType():
a, b = b, a
swap = -1
}
if b.IsSetType() && (a.IsTupleType() || a.IsListType()) {
// We'll just optimistically assume that the element types are
// unifyable/convertible, and let a second recursive pass
// figure out how to make that so.
return -1 * swap
}
if a.IsListType() && b.IsTupleType() {
// We'll just optimistically assume that the tuple's element types
// can be unified into something compatible with the list's element
// type.
return -1 * swap
}
if a.IsMapType() && b.IsObjectType() {
// We'll just optimistically assume that the object's attribute types
// can be unified into something compatible with the map's element
// type.
return -1 * swap
}
// For object and tuple types, comparing two types doesn't really tell
// the whole story because it may be possible to construct a new type C
// that is the supertype of both A and B by unifying each attribute/element
// separately. That possibility is handled by Unify as a follow-up if
// type sorting is insufficient to produce a valid result.
//
// Here we will take care of the simple possibilities where no new type
// is needed.
if a.IsObjectType() && b.IsObjectType() {
atysA := a.AttributeTypes()
atysB := b.AttributeTypes()
if len(atysA) != len(atysB) {
return 0
}
hasASuper := false
hasBSuper := false
for k := range atysA {
if _, has := atysB[k]; !has {
return 0
}
cmp := compareTypes(atysA[k], atysB[k])
if cmp < 0 {
hasASuper = true
} else if cmp > 0 {
hasBSuper = true
}
}
switch {
case hasASuper && hasBSuper:
return 0
case hasASuper:
return -1 * swap
case hasBSuper:
return 1 * swap
default:
return 0
}
}
if a.IsTupleType() && b.IsTupleType() {
etysA := a.TupleElementTypes()
etysB := b.TupleElementTypes()
if len(etysA) != len(etysB) {
return 0
}
hasASuper := false
hasBSuper := false
for i := range etysA {
cmp := compareTypes(etysA[i], etysB[i])
if cmp < 0 {
hasASuper = true
} else if cmp > 0 {
hasBSuper = true
}
}
switch {
case hasASuper && hasBSuper:
return 0
case hasASuper:
return -1 * swap
case hasBSuper:
return 1 * swap
default:
return 0
}
}
return 0
}

View File

@@ -0,0 +1,262 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
// conversion is an internal variant of Conversion that carries around
// a cty.Path to be used in error responses.
type conversion func(cty.Value, cty.Path) (cty.Value, error)
func getConversion(in cty.Type, out cty.Type, unsafe bool) conversion {
conv := getConversionKnown(in, out, unsafe)
if conv == nil {
return nil
}
// Wrap the conversion in some standard checks that we don't want to
// have to repeat in every conversion function.
var ret conversion
ret = func(in cty.Value, path cty.Path) (cty.Value, error) {
if in.IsMarked() {
// We must unmark during the conversion and then re-apply the
// same marks to the result.
in, inMarks := in.Unmark()
v, err := ret(in, path)
if v != cty.NilVal {
v = v.WithMarks(inMarks)
}
return v, err
}
if out == cty.DynamicPseudoType {
// Conversion to DynamicPseudoType always just passes through verbatim.
return in, nil
}
if isKnown, isNull := in.IsKnown(), in.IsNull(); !isKnown || isNull {
// Avoid constructing unknown or null values with types which
// include optional attributes. Known or non-null object values
// will be passed to a conversion function which drops the optional
// attributes from the type. Unknown and null pass through values
// must do the same to ensure that homogeneous collections have a
// single element type.
out = out.WithoutOptionalAttributesDeep()
if !isKnown {
return prepareUnknownResult(in.Range(), dynamicReplace(in.Type(), out)), nil
}
if isNull {
// We'll pass through nulls, albeit type converted, and let
// the caller deal with whatever handling they want to do in
// case null values are considered valid in some applications.
return cty.NullVal(dynamicReplace(in.Type(), out)), nil
}
}
return conv(in, path)
}
return ret
}
func getConversionKnown(in cty.Type, out cty.Type, unsafe bool) conversion {
switch {
case out == cty.DynamicPseudoType:
// Conversion *to* DynamicPseudoType means that the caller wishes
// to allow any type in this position, so we'll produce a do-nothing
// conversion that just passes through the value as-is.
return dynamicPassthrough
case unsafe && in == cty.DynamicPseudoType:
// Conversion *from* DynamicPseudoType means that we have a value
// whose type isn't yet known during type checking. For these we will
// assume that conversion will succeed and deal with any errors that
// result (which is why we can only do this when "unsafe" is set).
return dynamicFixup(out)
case in.IsPrimitiveType() && out.IsPrimitiveType():
conv := primitiveConversionsSafe[in][out]
if conv != nil {
return conv
}
if unsafe {
return primitiveConversionsUnsafe[in][out]
}
return nil
case out.IsObjectType() && in.IsObjectType():
return conversionObjectToObject(in, out, unsafe)
case out.IsTupleType() && in.IsTupleType():
return conversionTupleToTuple(in, out, unsafe)
case out.IsListType() && (in.IsListType() || in.IsSetType()):
inEty := in.ElementType()
outEty := out.ElementType()
if inEty.Equals(outEty) {
// This indicates that we're converting from list to set with
// the same element type, so we don't need an element converter.
return conversionCollectionToList(outEty, nil)
}
convEty := getConversion(inEty, outEty, unsafe)
if convEty == nil {
return nil
}
return conversionCollectionToList(outEty, convEty)
case out.IsSetType() && (in.IsListType() || in.IsSetType()):
if in.IsListType() && !unsafe {
// Conversion from list to map is unsafe because it will lose
// information: the ordering will not be preserved, and any
// duplicate elements will be conflated.
return nil
}
inEty := in.ElementType()
outEty := out.ElementType()
convEty := getConversion(inEty, outEty, unsafe)
if inEty.Equals(outEty) {
// This indicates that we're converting from set to list with
// the same element type, so we don't need an element converter.
return conversionCollectionToSet(outEty, nil)
}
if convEty == nil {
return nil
}
return conversionCollectionToSet(outEty, convEty)
case out.IsMapType() && in.IsMapType():
inEty := in.ElementType()
outEty := out.ElementType()
convEty := getConversion(inEty, outEty, unsafe)
if convEty == nil {
return nil
}
return conversionCollectionToMap(outEty, convEty)
case out.IsListType() && in.IsTupleType():
outEty := out.ElementType()
return conversionTupleToList(in, outEty, unsafe)
case out.IsSetType() && in.IsTupleType():
outEty := out.ElementType()
return conversionTupleToSet(in, outEty, unsafe)
case out.IsMapType() && in.IsObjectType():
outEty := out.ElementType()
return conversionObjectToMap(in, outEty, unsafe)
case out.IsObjectType() && in.IsMapType():
if !unsafe {
// Converting a map to an object is an "unsafe" conversion,
// because we don't know if all the map keys will correspond to
// object attributes.
return nil
}
return conversionMapToObject(in, out, unsafe)
case in.IsCapsuleType() || out.IsCapsuleType():
if !unsafe {
// Capsule types can only participate in "unsafe" conversions,
// because we don't know enough about their conversion behaviors
// to be sure that they will always be safe.
return nil
}
if in.Equals(out) {
// conversion to self is never allowed
return nil
}
if out.IsCapsuleType() {
if fn := out.CapsuleOps().ConversionTo; fn != nil {
return conversionToCapsule(in, out, fn)
}
}
if in.IsCapsuleType() {
if fn := in.CapsuleOps().ConversionFrom; fn != nil {
return conversionFromCapsule(in, out, fn)
}
}
// No conversion operation is available, then.
return nil
default:
return nil
}
}
// retConversion wraps a conversion (internal type) so it can be returned
// as a Conversion (public type).
func retConversion(conv conversion) Conversion {
if conv == nil {
return nil
}
return func(in cty.Value) (cty.Value, error) {
return conv(in, cty.Path(nil))
}
}
// prepareUnknownResult can apply value refinements to a returned unknown value
// in certain cases where characteristics of the source value or type can
// transfer into range constraints on the result value.
func prepareUnknownResult(sourceRange cty.ValueRange, targetTy cty.Type) cty.Value {
sourceTy := sourceRange.TypeConstraint()
ret := cty.UnknownVal(targetTy)
if sourceRange.DefinitelyNotNull() {
ret = ret.RefineNotNull()
}
switch {
case sourceTy.IsObjectType() && targetTy.IsMapType():
// A map built from an object type always has the same number of
// elements as the source type has attributes.
return ret.Refine().CollectionLength(len(sourceTy.AttributeTypes())).NewValue()
case sourceTy.IsTupleType() && targetTy.IsListType():
// A list built from a typle type always has the same number of
// elements as the source type has elements.
return ret.Refine().CollectionLength(sourceTy.Length()).NewValue()
case sourceTy.IsTupleType() && targetTy.IsSetType():
// When building a set from a tuple type we can't exactly constrain
// the length because some elements might coalesce, but we can
// guarantee an upper limit. We can also guarantee at least one
// element if the tuple isn't empty.
switch l := sourceTy.Length(); l {
case 0, 1:
return ret.Refine().CollectionLength(l).NewValue()
default:
return ret.Refine().
CollectionLengthLowerBound(1).
CollectionLengthUpperBound(sourceTy.Length()).
NewValue()
}
case sourceTy.IsCollectionType() && targetTy.IsCollectionType():
// NOTE: We only reach this function if there is an available
// conversion between the source and target type, so we don't
// need to repeat element type compatibility checks and such here.
//
// If the source value already has a refined length then we'll
// transfer those refinements to the result, because conversion
// does not change length (aside from set element coalescing).
b := ret.Refine()
if targetTy.IsSetType() {
if sourceRange.LengthLowerBound() > 0 {
// If the source has at least one element then the result
// must always have at least one too, because value coalescing
// cannot totally empty the set.
b = b.CollectionLengthLowerBound(1)
}
} else {
b = b.CollectionLengthLowerBound(sourceRange.LengthLowerBound())
}
b = b.CollectionLengthUpperBound(sourceRange.LengthUpperBound())
return b.NewValue()
default:
return ret
}
}

View File

@@ -0,0 +1,31 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
func conversionToCapsule(inTy, outTy cty.Type, fn func(inTy cty.Type) func(cty.Value, cty.Path) (interface{}, error)) conversion {
rawConv := fn(inTy)
if rawConv == nil {
return nil
}
return func(in cty.Value, path cty.Path) (cty.Value, error) {
rawV, err := rawConv(in, path)
if err != nil {
return cty.NilVal, err
}
return cty.CapsuleVal(outTy, rawV), nil
}
}
func conversionFromCapsule(inTy, outTy cty.Type, fn func(outTy cty.Type) func(interface{}, cty.Path) (cty.Value, error)) conversion {
rawConv := fn(outTy)
if rawConv == nil {
return nil
}
return func(in cty.Value, path cty.Path) (cty.Value, error) {
return rawConv(in.EncapsulatedValue(), path)
}
}

View File

@@ -0,0 +1,629 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
// conversionCollectionToList returns a conversion that will apply the given
// conversion to all of the elements of a collection (something that supports
// ForEachElement and LengthInt) and then returns the result as a list.
//
// "conv" can be nil if the elements are expected to already be of the
// correct type and just need to be re-wrapped into a list. (For example,
// if we're converting from a set into a list of the same element type.)
func conversionCollectionToList(ety cty.Type, conv conversion) conversion {
return func(val cty.Value, path cty.Path) (cty.Value, error) {
if !val.Length().IsKnown() {
// If the input collection has an unknown length (which is true
// for a set containing unknown values) then our result must be
// an unknown list, because we can't predict how many elements
// the resulting list should have.
return cty.UnknownVal(cty.List(val.Type().ElementType())), nil
}
elems := make([]cty.Value, 0, val.LengthInt())
i := int64(0)
elemPath := append(path.Copy(), nil)
it := val.ElementIterator()
for it.Next() {
_, val := it.Element()
var err error
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: cty.NumberIntVal(i),
}
if conv != nil {
val, err = conv(val, elemPath)
if err != nil {
return cty.NilVal, err
}
}
if val.IsNull() {
val = cty.NullVal(val.Type().WithoutOptionalAttributesDeep())
}
elems = append(elems, val)
i++
}
if len(elems) == 0 {
// Prefer a concrete type over a dynamic type when returning an
// empty list
if ety == cty.DynamicPseudoType {
return cty.ListValEmpty(val.Type().ElementType()), nil
}
return cty.ListValEmpty(ety.WithoutOptionalAttributesDeep()), nil
}
if !cty.CanListVal(elems) {
return cty.NilVal, path.NewErrorf("element types must all match for conversion to list")
}
return cty.ListVal(elems), nil
}
}
// conversionCollectionToSet returns a conversion that will apply the given
// conversion to all of the elements of a collection (something that supports
// ForEachElement and LengthInt) and then returns the result as a set.
//
// "conv" can be nil if the elements are expected to already be of the
// correct type and just need to be re-wrapped into a set. (For example,
// if we're converting from a list into a set of the same element type.)
func conversionCollectionToSet(ety cty.Type, conv conversion) conversion {
return func(val cty.Value, path cty.Path) (cty.Value, error) {
elems := make([]cty.Value, 0, val.LengthInt())
i := int64(0)
elemPath := append(path.Copy(), nil)
it := val.ElementIterator()
for it.Next() {
_, val := it.Element()
var err error
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: cty.NumberIntVal(i),
}
if conv != nil {
val, err = conv(val, elemPath)
if err != nil {
return cty.NilVal, err
}
}
if val.IsNull() {
val = cty.NullVal(val.Type().WithoutOptionalAttributesDeep())
}
elems = append(elems, val)
i++
}
if len(elems) == 0 {
// Prefer a concrete type over a dynamic type when returning an
// empty set
if ety == cty.DynamicPseudoType {
return cty.SetValEmpty(val.Type().ElementType()), nil
}
return cty.SetValEmpty(ety.WithoutOptionalAttributesDeep()), nil
}
if !cty.CanSetVal(elems) {
return cty.NilVal, path.NewErrorf("element types must all match for conversion to set")
}
return cty.SetVal(elems), nil
}
}
// conversionCollectionToMap returns a conversion that will apply the given
// conversion to all of the elements of a collection (something that supports
// ForEachElement and LengthInt) and then returns the result as a map.
//
// "conv" can be nil if the elements are expected to already be of the
// correct type and just need to be re-wrapped into a map.
func conversionCollectionToMap(ety cty.Type, conv conversion) conversion {
return func(val cty.Value, path cty.Path) (cty.Value, error) {
elems := make(map[string]cty.Value, 0)
elemPath := append(path.Copy(), nil)
it := val.ElementIterator()
for it.Next() {
key, val := it.Element()
var err error
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: key,
}
keyStr, err := Convert(key, cty.String)
if err != nil {
// Should never happen, because keys can only be numbers or
// strings and both can convert to string.
return cty.DynamicVal, elemPath.NewErrorf("cannot convert key type %s to string for map", key.Type().FriendlyName())
}
if conv != nil {
val, err = conv(val, elemPath)
if err != nil {
return cty.NilVal, err
}
}
elems[keyStr.AsString()] = val
}
if len(elems) == 0 {
// Prefer a concrete type over a dynamic type when returning an
// empty map
if ety == cty.DynamicPseudoType {
return cty.MapValEmpty(val.Type().ElementType()), nil
}
return cty.MapValEmpty(ety), nil
}
if ety.IsCollectionType() || ety.IsObjectType() {
var err error
if elems, err = conversionUnifyCollectionElements(elems, path, false); err != nil {
return cty.NilVal, err
}
}
if !cty.CanMapVal(elems) {
return cty.NilVal, path.NewErrorf("element types must all match for conversion to map")
}
return cty.MapVal(elems), nil
}
}
// conversionTupleToSet returns a conversion that will take a value of the
// given tuple type and return a set of the given element type.
//
// Will panic if the given tupleType isn't actually a tuple type.
func conversionTupleToSet(tupleType cty.Type, setEty cty.Type, unsafe bool) conversion {
tupleEtys := tupleType.TupleElementTypes()
if len(tupleEtys) == 0 {
// Empty tuple short-circuit
return func(val cty.Value, path cty.Path) (cty.Value, error) {
return cty.SetValEmpty(setEty.WithoutOptionalAttributesDeep()), nil
}
}
if setEty == cty.DynamicPseudoType {
// This is a special case where the caller wants us to find
// a suitable single type that all elements can convert to, if
// possible.
setEty, _ = unify(tupleEtys, unsafe)
if setEty == cty.NilType {
return nil
}
// If the set element type after unification is still the dynamic
// type, the only way this can result in a valid set is if all values
// are of dynamic type
if setEty == cty.DynamicPseudoType {
for _, tupleEty := range tupleEtys {
if !tupleEty.Equals(cty.DynamicPseudoType) {
return nil
}
}
}
}
elemConvs := make([]conversion, len(tupleEtys))
for i, tupleEty := range tupleEtys {
if tupleEty.Equals(setEty) {
// no conversion required
continue
}
elemConvs[i] = getConversion(tupleEty, setEty, unsafe)
if elemConvs[i] == nil {
// If any of our element conversions are impossible, then the our
// whole conversion is impossible.
return nil
}
}
// If we fall out here then a conversion is possible, using the
// element conversions in elemConvs
return func(val cty.Value, path cty.Path) (cty.Value, error) {
elems := make([]cty.Value, 0, len(elemConvs))
elemPath := append(path.Copy(), nil)
i := int64(0)
it := val.ElementIterator()
for it.Next() {
_, val := it.Element()
var err error
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: cty.NumberIntVal(i),
}
conv := elemConvs[i]
if conv != nil {
val, err = conv(val, elemPath)
if err != nil {
return cty.NilVal, err
}
}
if val.IsNull() {
val = cty.NullVal(val.Type().WithoutOptionalAttributesDeep())
}
elems = append(elems, val)
i++
}
if !cty.CanSetVal(elems) {
return cty.NilVal, path.NewErrorf("element types must all match for conversion to set")
}
return cty.SetVal(elems), nil
}
}
// conversionTupleToList returns a conversion that will take a value of the
// given tuple type and return a list of the given element type.
//
// Will panic if the given tupleType isn't actually a tuple type.
func conversionTupleToList(tupleType cty.Type, listEty cty.Type, unsafe bool) conversion {
tupleEtys := tupleType.TupleElementTypes()
if len(tupleEtys) == 0 {
// Empty tuple short-circuit
return func(val cty.Value, path cty.Path) (cty.Value, error) {
return cty.ListValEmpty(listEty.WithoutOptionalAttributesDeep()), nil
}
}
if listEty == cty.DynamicPseudoType {
// This is a special case where the caller wants us to find
// a suitable single type that all elements can convert to, if
// possible.
listEty, _ = unify(tupleEtys, unsafe)
if listEty == cty.NilType {
return nil
}
// If the list element type after unification is still the dynamic
// type, the only way this can result in a valid list is if all values
// are of dynamic type
if listEty == cty.DynamicPseudoType {
for _, tupleEty := range tupleEtys {
if !tupleEty.Equals(cty.DynamicPseudoType) {
return nil
}
}
}
}
elemConvs := make([]conversion, len(tupleEtys))
for i, tupleEty := range tupleEtys {
if tupleEty.Equals(listEty) {
// no conversion required
continue
}
elemConvs[i] = getConversion(tupleEty, listEty, unsafe)
if elemConvs[i] == nil {
// If any of our element conversions are impossible, then the our
// whole conversion is impossible.
return nil
}
}
// If we fall out here then a conversion is possible, using the
// element conversions in elemConvs
return func(val cty.Value, path cty.Path) (cty.Value, error) {
elems := make([]cty.Value, 0, len(elemConvs))
elemTys := make([]cty.Type, 0, len(elems))
elemPath := append(path.Copy(), nil)
i := int64(0)
it := val.ElementIterator()
for it.Next() {
_, val := it.Element()
var err error
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: cty.NumberIntVal(i),
}
conv := elemConvs[i]
if conv != nil {
val, err = conv(val, elemPath)
if err != nil {
return cty.NilVal, err
}
}
elems = append(elems, val)
elemTys = append(elemTys, val.Type())
i++
}
elems, err := conversionUnifyListElements(elems, elemPath, unsafe)
if err != nil {
return cty.NilVal, err
}
if !cty.CanListVal(elems) {
return cty.NilVal, path.NewErrorf("element types must all match for conversion to list")
}
return cty.ListVal(elems), nil
}
}
// conversionObjectToMap returns a conversion that will take a value of the
// given object type and return a map of the given element type.
//
// Will panic if the given objectType isn't actually an object type.
func conversionObjectToMap(objectType cty.Type, mapEty cty.Type, unsafe bool) conversion {
objectAtys := objectType.AttributeTypes()
if len(objectAtys) == 0 {
// Empty object short-circuit
return func(val cty.Value, path cty.Path) (cty.Value, error) {
return cty.MapValEmpty(mapEty.WithoutOptionalAttributesDeep()), nil
}
}
if mapEty == cty.DynamicPseudoType {
// This is a special case where the caller wants us to find
// a suitable single type that all elements can convert to, if
// possible.
objectAtysList := make([]cty.Type, 0, len(objectAtys))
for _, aty := range objectAtys {
objectAtysList = append(objectAtysList, aty)
}
mapEty, _ = unify(objectAtysList, unsafe)
if mapEty == cty.NilType {
return nil
}
}
elemConvs := make(map[string]conversion, len(objectAtys))
for name, objectAty := range objectAtys {
if objectAty.Equals(mapEty) {
// no conversion required
continue
}
elemConvs[name] = getConversion(objectAty, mapEty, unsafe)
if elemConvs[name] == nil {
// If any of our element conversions are impossible, then the our
// whole conversion is impossible.
return nil
}
}
// If we fall out here then a conversion is possible, using the
// element conversions in elemConvs
return func(val cty.Value, path cty.Path) (cty.Value, error) {
elems := make(map[string]cty.Value, len(elemConvs))
elemPath := append(path.Copy(), nil)
it := val.ElementIterator()
for it.Next() {
name, val := it.Element()
var err error
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: name,
}
conv := elemConvs[name.AsString()]
if conv != nil {
val, err = conv(val, elemPath)
if err != nil {
return cty.NilVal, err
}
}
elems[name.AsString()] = val
}
if mapEty.IsCollectionType() || mapEty.IsObjectType() {
var err error
if elems, err = conversionUnifyCollectionElements(elems, path, unsafe); err != nil {
return cty.NilVal, err
}
}
if !cty.CanMapVal(elems) {
return cty.NilVal, path.NewErrorf("attribute types must all match for conversion to map")
}
return cty.MapVal(elems), nil
}
}
// conversionMapToObject returns a conversion that will take a value of the
// given map type and return an object of the given type. The object attribute
// types must all be compatible with the map element type.
//
// Will panic if the given mapType and objType are not maps and objects
// respectively.
func conversionMapToObject(mapType cty.Type, objType cty.Type, unsafe bool) conversion {
objectAtys := objType.AttributeTypes()
mapEty := mapType.ElementType()
elemConvs := make(map[string]conversion, len(objectAtys))
for name, objectAty := range objectAtys {
if objectAty.Equals(mapEty) {
// no conversion required
continue
}
elemConvs[name] = getConversion(mapEty, objectAty, unsafe)
if elemConvs[name] == nil {
// This means that this conversion is impossible. Typically, we
// would give up at this point and declare the whole conversion
// impossible. But, if this attribute is optional then maybe we will
// be able to do this conversion anyway provided the actual concrete
// map doesn't have this value set.
//
// We only do this in "unsafe" mode, because we cannot guarantee
// that the returned conversion will actually succeed once applied.
if objType.AttributeOptional(name) && unsafe {
// This attribute is optional, so let's leave this conversion in
// as a nil, and we can error later if we actually have to
// convert this.
continue
}
// Otherwise, give up. This conversion is impossible as we have a
// required attribute that doesn't match the map's inner type.
return nil
}
}
// If we fall out here then a conversion may be possible, using the
// element conversions in elemConvs
return func(val cty.Value, path cty.Path) (cty.Value, error) {
elems := make(map[string]cty.Value, len(elemConvs))
elemPath := append(path.Copy(), nil)
it := val.ElementIterator()
for it.Next() {
name, val := it.Element()
// if there is no corresponding attribute, we skip this key
if _, ok := objectAtys[name.AsString()]; !ok {
continue
}
var err error
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: name,
}
// There are 3 cases here:
// 1. This attribute is not in elemConvs
// 2. This attribute is in elemConvs and is not nil
// 3. This attribute is in elemConvs and is nil.
// In case 1, we do not enter any of the branches below. This case
// means the attribute type is the same between the map and the
// object, and we don't need to do any conversion.
if conv, ok := elemConvs[name.AsString()]; conv != nil {
// This is case 2. The attribute type is different between the
// map and the object, and we know how to convert between them.
// So, we reset val to be the converted value and carry on.
val, err = conv(val, elemPath)
if err != nil {
return cty.NilVal, err
}
} else if ok {
// This is case 3 and it is an error. The attribute types are
// different between the map and the object, but we cannot
// convert between them.
//
// Now typically, this would be picked earlier on when we were
// building elemConvs. However, in the case of optional
// attributes there was a chance we could still convert the
// overall object even if this particular attribute was not
// convertable. This is because it could have not been set in
// the map, and we could skip over it here and set a null value.
//
// Since we reached this branch, we know that map did actually
// contain a non-convertable optional attribute. This means we
// error.
return cty.NilVal, path.NewErrorf("map element type is incompatible with attribute %q: %s", name.AsString(), MismatchMessage(val.Type(), objType.AttributeType(name.AsString())))
}
if val.IsNull() {
val = cty.NullVal(val.Type().WithoutOptionalAttributesDeep())
}
elems[name.AsString()] = val
}
for name, aty := range objectAtys {
if _, exists := elems[name]; !exists {
if optional := objType.AttributeOptional(name); optional {
elems[name] = cty.NullVal(aty)
} else {
return cty.NilVal, path.NewErrorf("map has no element for required attribute %q", name)
}
}
}
return cty.ObjectVal(elems), nil
}
}
func conversionUnifyCollectionElements(elems map[string]cty.Value, path cty.Path, unsafe bool) (map[string]cty.Value, error) {
elemTypes := make([]cty.Type, 0, len(elems))
for _, elem := range elems {
elemTypes = append(elemTypes, elem.Type())
}
unifiedType, _ := unify(elemTypes, unsafe)
if unifiedType == cty.NilType {
return nil, path.NewErrorf("cannot find a common base type for all elements")
}
unifiedElems := make(map[string]cty.Value)
elemPath := append(path.Copy(), nil)
for name, elem := range elems {
if elem.Type().Equals(unifiedType) {
unifiedElems[name] = elem
continue
}
conv := getConversion(elem.Type(), unifiedType, unsafe)
if conv == nil {
}
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: cty.StringVal(name),
}
val, err := conv(elem, elemPath)
if err != nil {
return nil, err
}
unifiedElems[name] = val
}
return unifiedElems, nil
}
func conversionUnifyListElements(elems []cty.Value, path cty.Path, unsafe bool) ([]cty.Value, error) {
elemTypes := make([]cty.Type, len(elems))
for i, elem := range elems {
elemTypes[i] = elem.Type()
}
unifiedType, _ := unify(elemTypes, unsafe)
if unifiedType == cty.NilType {
return nil, path.NewErrorf("cannot find a common base type for all elements")
}
ret := make([]cty.Value, len(elems))
elemPath := append(path.Copy(), nil)
for i, elem := range elems {
if elem.Type().Equals(unifiedType) {
ret[i] = elem
continue
}
conv := getConversion(elem.Type(), unifiedType, unsafe)
if conv == nil {
}
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
val, err := conv(elem, elemPath)
if err != nil {
return nil, err
}
ret[i] = val
}
return ret, nil
}

View File

@@ -0,0 +1,137 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
// dynamicFixup deals with just-in-time conversions of values that were
// input-typed as cty.DynamicPseudoType during analysis, ensuring that
// we end up with the desired output type once the value is known, or
// failing with an error if that is not possible.
//
// This is in the spirit of the cty philosophy of optimistically assuming that
// DynamicPseudoType values will become the intended value eventually, and
// dealing with any inconsistencies during final evaluation.
func dynamicFixup(wantType cty.Type) conversion {
return func(in cty.Value, path cty.Path) (cty.Value, error) {
ret, err := Convert(in, wantType)
if err != nil {
// Re-wrap this error so that the returned path is relative
// to the caller's original value, rather than relative to our
// conversion value here.
return cty.NilVal, path.NewError(err)
}
return ret, nil
}
}
// dynamicPassthrough is an identity conversion that is used when the
// target type is DynamicPseudoType, indicating that the caller doesn't care
// which type is returned.
func dynamicPassthrough(in cty.Value, path cty.Path) (cty.Value, error) {
return in, nil
}
// dynamicReplace aims to return the out type unchanged, but if it finds a
// dynamic type either directly or in any descendent elements it replaces them
// with the equivalent type from in.
//
// This function assumes that in and out are compatible from a Convert
// perspective, and will panic if it finds that they are not. For example if
// in is an object and out is a map, this function will still attempt to iterate
// through both as if they were the same.
func dynamicReplace(in, out cty.Type) cty.Type {
if in == cty.DynamicPseudoType || in == cty.NilType {
// Short circuit this case, there's no point worrying about this if in
// is a dynamic type or a nil type. Out is the best we can do.
return out
}
switch {
case out == cty.DynamicPseudoType:
// So replace out with in.
return in
case out.IsPrimitiveType(), out.IsCapsuleType():
// out is not dynamic and it doesn't contain descendent elements so just
// return it unchanged.
return out
case out.IsMapType():
var elemType cty.Type
// Maps are compatible with other maps or objects.
if in.IsMapType() {
elemType = dynamicReplace(in.ElementType(), out.ElementType())
}
if in.IsObjectType() {
var types []cty.Type
for _, t := range in.AttributeTypes() {
types = append(types, t)
}
unifiedType, _ := unify(types, true)
elemType = dynamicReplace(unifiedType, out.ElementType())
}
return cty.Map(elemType)
case out.IsObjectType():
// Objects are compatible with other objects and maps.
outTypes := map[string]cty.Type{}
if in.IsMapType() {
for attr, attrType := range out.AttributeTypes() {
outTypes[attr] = dynamicReplace(in.ElementType(), attrType)
}
}
if in.IsObjectType() {
for attr, attrType := range out.AttributeTypes() {
if !in.HasAttribute(attr) {
// If in does not have this attribute, then it is an
// optional attribute and there is nothing we can do except
// to return the type from out even if it is dynamic.
outTypes[attr] = attrType
continue
}
outTypes[attr] = dynamicReplace(in.AttributeType(attr), attrType)
}
}
return cty.Object(outTypes)
case out.IsSetType():
var elemType cty.Type
// Sets are compatible with other sets, lists, tuples.
if in.IsSetType() || in.IsListType() {
elemType = dynamicReplace(in.ElementType(), out.ElementType())
}
if in.IsTupleType() {
unifiedType, _ := unify(in.TupleElementTypes(), true)
elemType = dynamicReplace(unifiedType, out.ElementType())
}
return cty.Set(elemType)
case out.IsListType():
var elemType cty.Type
// Lists are compatible with other lists, sets, and tuples.
if in.IsSetType() || in.IsListType() {
elemType = dynamicReplace(in.ElementType(), out.ElementType())
}
if in.IsTupleType() {
unifiedType, _ := unify(in.TupleElementTypes(), true)
elemType = dynamicReplace(unifiedType, out.ElementType())
}
return cty.List(elemType)
case out.IsTupleType():
// Tuples are only compatible with other tuples
var types []cty.Type
for ix := 0; ix < len(out.TupleElementTypes()); ix++ {
types = append(types, dynamicReplace(in.TupleElementType(ix), out.TupleElementType(ix)))
}
return cty.Tuple(types)
default:
panic("unrecognized type " + out.FriendlyName())
}
}

View File

@@ -0,0 +1,101 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
// conversionObjectToObject returns a conversion that will make the input
// object type conform to the output object type, if possible.
//
// Conversion is possible only if the output type is a subset of the input
// type, meaning that each attribute of the output type has a corresponding
// attribute in the input type where a recursive conversion is available.
//
// If the "out" type has any optional attributes, those attributes may be
// absent in the "in" type, in which case null values will be used in their
// place in the result.
//
// Shallow object conversions work the same for both safe and unsafe modes,
// but the safety flag is passed on to recursive conversions and may thus
// limit the above definition of "subset".
func conversionObjectToObject(in, out cty.Type, unsafe bool) conversion {
inAtys := in.AttributeTypes()
outAtys := out.AttributeTypes()
outOptionals := out.OptionalAttributes()
attrConvs := make(map[string]conversion)
for name, outAty := range outAtys {
inAty, exists := inAtys[name]
if !exists {
if _, optional := outOptionals[name]; optional {
// If it's optional then we'll skip inserting an
// attribute conversion and then deal with inserting
// the default value in our overall conversion logic
// later.
continue
}
// No conversion is available, then.
return nil
}
if inAty.Equals(outAty) {
// No conversion needed, but we'll still record the attribute
// in our map for later reference.
attrConvs[name] = nil
continue
}
attrConvs[name] = getConversion(inAty, outAty, unsafe)
if attrConvs[name] == nil {
// If a recursive conversion isn't available, then our top-level
// configuration is impossible too.
return nil
}
}
// If we get here then a conversion is possible, using the attribute
// conversions given in attrConvs.
return func(val cty.Value, path cty.Path) (cty.Value, error) {
attrVals := make(map[string]cty.Value, len(attrConvs))
path = append(path, nil)
pathStep := &path[len(path)-1]
for it := val.ElementIterator(); it.Next(); {
nameVal, val := it.Element()
var err error
name := nameVal.AsString()
*pathStep = cty.GetAttrStep{
Name: name,
}
conv, exists := attrConvs[name]
if !exists {
continue
}
if conv != nil {
val, err = conv(val, path)
if err != nil {
return cty.NilVal, err
}
}
if val.IsNull() {
// Strip optional attributes out of the embedded type for null
// values.
val = cty.NullVal(val.Type().WithoutOptionalAttributesDeep())
}
attrVals[name] = val
}
for name := range outOptionals {
if _, exists := attrVals[name]; !exists {
wantTy := outAtys[name]
attrVals[name] = cty.NullVal(wantTy.WithoutOptionalAttributesDeep())
}
}
return cty.ObjectVal(attrVals), nil
}
}

View File

@@ -0,0 +1,57 @@
package convert
import (
"strings"
"github.com/zclconf/go-cty/cty"
)
var stringTrue = cty.StringVal("true")
var stringFalse = cty.StringVal("false")
var primitiveConversionsSafe = map[cty.Type]map[cty.Type]conversion{
cty.Number: {
cty.String: func(val cty.Value, path cty.Path) (cty.Value, error) {
f := val.AsBigFloat()
return cty.StringVal(f.Text('f', -1)), nil
},
},
cty.Bool: {
cty.String: func(val cty.Value, path cty.Path) (cty.Value, error) {
if val.True() {
return stringTrue, nil
} else {
return stringFalse, nil
}
},
},
}
var primitiveConversionsUnsafe = map[cty.Type]map[cty.Type]conversion{
cty.String: {
cty.Number: func(val cty.Value, path cty.Path) (cty.Value, error) {
v, err := cty.ParseNumberVal(val.AsString())
if err != nil {
return cty.NilVal, path.NewErrorf("a number is required")
}
return v, nil
},
cty.Bool: func(val cty.Value, path cty.Path) (cty.Value, error) {
switch val.AsString() {
case "true", "1":
return cty.True, nil
case "false", "0":
return cty.False, nil
default:
switch strings.ToLower(val.AsString()) {
case "true":
return cty.NilVal, path.NewErrorf("a bool is required; to convert from string, use lowercase \"true\"")
case "false":
return cty.NilVal, path.NewErrorf("a bool is required; to convert from string, use lowercase \"false\"")
default:
return cty.NilVal, path.NewErrorf("a bool is required")
}
}
},
},
}

View File

@@ -0,0 +1,71 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
// conversionTupleToTuple returns a conversion that will make the input
// tuple type conform to the output tuple type, if possible.
//
// Conversion is possible only if the two tuple types have the same number
// of elements and the corresponding elements by index can be converted.
//
// Shallow tuple conversions work the same for both safe and unsafe modes,
// but the safety flag is passed on to recursive conversions and may thus
// limit which element type conversions are possible.
func conversionTupleToTuple(in, out cty.Type, unsafe bool) conversion {
inEtys := in.TupleElementTypes()
outEtys := out.TupleElementTypes()
if len(inEtys) != len(outEtys) {
return nil // no conversion is possible
}
elemConvs := make([]conversion, len(inEtys))
for i, outEty := range outEtys {
inEty := inEtys[i]
if inEty.Equals(outEty) {
// No conversion needed, so we can leave this one nil.
continue
}
elemConvs[i] = getConversion(inEty, outEty, unsafe)
if elemConvs[i] == nil {
// If a recursive conversion isn't available, then our top-level
// configuration is impossible too.
return nil
}
}
// If we get here then a conversion is possible, using the element
// conversions given in elemConvs.
return func(val cty.Value, path cty.Path) (cty.Value, error) {
elemVals := make([]cty.Value, len(elemConvs))
path = append(path, nil)
pathStep := &path[len(path)-1]
i := 0
for it := val.ElementIterator(); it.Next(); i++ {
_, val := it.Element()
var err error
*pathStep = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
conv := elemConvs[i]
if conv != nil {
val, err = conv(val, path)
if err != nil {
return cty.NilVal, err
}
}
elemVals[i] = val
}
return cty.TupleVal(elemVals), nil
}
}

15
vendor/github.com/zclconf/go-cty/cty/convert/doc.go generated vendored Normal file
View File

@@ -0,0 +1,15 @@
// Package convert contains some routines for converting between cty types.
// The intent of providing this package is to encourage applications using
// cty to have consistent type conversion behavior for maximal interoperability
// when Values pass from one application to another.
//
// The conversions are categorized into two categories. "Safe" conversions are
// ones that are guaranteed to succeed if given a non-null value of the
// appropriate source type. "Unsafe" conversions, on the other hand, are valid
// for only a subset of input values, and thus may fail with an error when
// called for values outside of that valid subset.
//
// The functions whose names end in Unsafe support all of the conversions that
// are supported by the corresponding functions whose names do not have that
// suffix, and then additional unsafe conversions as well.
package convert

View File

@@ -0,0 +1,226 @@
package convert
import (
"bytes"
"fmt"
"sort"
"github.com/zclconf/go-cty/cty"
)
// MismatchMessage is a helper to return an English-language description of
// the differences between got and want, phrased as a reason why got does
// not conform to want.
//
// This function does not itself attempt conversion, and so it should generally
// be used only after a conversion has failed, to report the conversion failure
// to an English-speaking user. The result will be confusing got is actually
// conforming to or convertable to want.
//
// The shorthand helper function Convert uses this function internally to
// produce its error messages, so callers of that function do not need to
// also use MismatchMessage.
//
// This function is similar to Type.TestConformance, but it is tailored to
// describing conversion failures and so the messages it generates relate
// specifically to the conversion rules implemented in this package.
func MismatchMessage(got, want cty.Type) string {
switch {
case got.IsObjectType() && want.IsObjectType():
// If both types are object types then we may be able to say something
// about their respective attributes.
return mismatchMessageObjects(got, want)
case got.IsTupleType() && want.IsListType() && want.ElementType() == cty.DynamicPseudoType:
// If conversion from tuple to list failed then it's because we couldn't
// find a common type to convert all of the tuple elements to.
return "all list elements must have the same type"
case got.IsTupleType() && want.IsSetType() && want.ElementType() == cty.DynamicPseudoType:
// If conversion from tuple to set failed then it's because we couldn't
// find a common type to convert all of the tuple elements to.
return "all set elements must have the same type"
case got.IsObjectType() && want.IsMapType() && want.ElementType() == cty.DynamicPseudoType:
// If conversion from object to map failed then it's because we couldn't
// find a common type to convert all of the object attributes to.
return "all map elements must have the same type"
case (got.IsTupleType() || got.IsObjectType()) && want.IsCollectionType():
return mismatchMessageCollectionsFromStructural(got, want)
case got.IsCollectionType() && want.IsCollectionType():
return mismatchMessageCollectionsFromCollections(got, want)
default:
// If we have nothing better to say, we'll just state what was required.
return want.FriendlyNameForConstraint() + " required"
}
}
func mismatchMessageObjects(got, want cty.Type) string {
// Per our conversion rules, "got" is allowed to be a superset of "want",
// and so we'll produce error messages here under that assumption.
gotAtys := got.AttributeTypes()
wantAtys := want.AttributeTypes()
// If we find missing attributes then we'll report those in preference,
// but if not then we will report a maximum of one non-conforming
// attribute, just to keep our messages relatively terse.
// We'll also prefer to report a recursive type error from an _unsafe_
// conversion over a safe one, because these are subjectively more
// "serious".
var missingAttrs []string
var unsafeMismatchAttr string
var safeMismatchAttr string
for name, wantAty := range wantAtys {
gotAty, exists := gotAtys[name]
if !exists {
if !want.AttributeOptional(name) {
missingAttrs = append(missingAttrs, name)
}
continue
}
if gotAty.Equals(wantAty) {
continue // exact match, so no problem
}
// We'll now try to convert these attributes in isolation and
// see if we have a nested conversion error to report.
// We'll try an unsafe conversion first, and then fall back on
// safe if unsafe is possible.
// If we already have an unsafe mismatch attr error then we won't bother
// hunting for another one.
if unsafeMismatchAttr != "" {
continue
}
if conv := GetConversionUnsafe(gotAty, wantAty); conv == nil {
unsafeMismatchAttr = fmt.Sprintf("attribute %q: %s", name, MismatchMessage(gotAty, wantAty))
}
// If we already have a safe mismatch attr error then we won't bother
// hunting for another one.
if safeMismatchAttr != "" {
continue
}
if conv := GetConversion(gotAty, wantAty); conv == nil {
safeMismatchAttr = fmt.Sprintf("attribute %q: %s", name, MismatchMessage(gotAty, wantAty))
}
}
// We should now have collected at least one problem. If we have more than
// one then we'll use our preference order to decide what is most important
// to report.
switch {
case len(missingAttrs) != 0:
sort.Strings(missingAttrs)
switch len(missingAttrs) {
case 1:
return fmt.Sprintf("attribute %q is required", missingAttrs[0])
case 2:
return fmt.Sprintf("attributes %q and %q are required", missingAttrs[0], missingAttrs[1])
default:
sort.Strings(missingAttrs)
var buf bytes.Buffer
for _, name := range missingAttrs[:len(missingAttrs)-1] {
fmt.Fprintf(&buf, "%q, ", name)
}
fmt.Fprintf(&buf, "and %q", missingAttrs[len(missingAttrs)-1])
return fmt.Sprintf("attributes %s are required", buf.Bytes())
}
case unsafeMismatchAttr != "":
return unsafeMismatchAttr
case safeMismatchAttr != "":
return safeMismatchAttr
default:
// We should never get here, but if we do then we'll return
// just a generic message.
return "incorrect object attributes"
}
}
func mismatchMessageCollectionsFromStructural(got, want cty.Type) string {
// First some straightforward cases where the kind is just altogether wrong.
switch {
case want.IsListType() && !got.IsTupleType():
return want.FriendlyNameForConstraint() + " required"
case want.IsSetType() && !got.IsTupleType():
return want.FriendlyNameForConstraint() + " required"
case want.IsMapType() && !got.IsObjectType():
return want.FriendlyNameForConstraint() + " required"
}
// If the kinds are matched well enough then we'll move on to checking
// individual elements.
wantEty := want.ElementType()
switch {
case got.IsTupleType():
for i, gotEty := range got.TupleElementTypes() {
if gotEty.Equals(wantEty) {
continue // exact match, so no problem
}
if conv := getConversion(gotEty, wantEty, true); conv != nil {
continue // conversion is available, so no problem
}
return fmt.Sprintf("element %d: %s", i, MismatchMessage(gotEty, wantEty))
}
// If we get down here then something weird is going on but we'll
// return a reasonable fallback message anyway.
return fmt.Sprintf("all elements must be %s", wantEty.FriendlyNameForConstraint())
case got.IsObjectType():
for name, gotAty := range got.AttributeTypes() {
if gotAty.Equals(wantEty) {
continue // exact match, so no problem
}
if conv := getConversion(gotAty, wantEty, true); conv != nil {
continue // conversion is available, so no problem
}
return fmt.Sprintf("element %q: %s", name, MismatchMessage(gotAty, wantEty))
}
// If we get down here then something weird is going on but we'll
// return a reasonable fallback message anyway.
return fmt.Sprintf("all elements must be %s", wantEty.FriendlyNameForConstraint())
default:
// Should not be possible to get here since we only call this function
// with got as structural types, but...
return want.FriendlyNameForConstraint() + " required"
}
}
func mismatchMessageCollectionsFromCollections(got, want cty.Type) string {
// First some straightforward cases where the kind is just altogether wrong.
switch {
case want.IsListType() && !(got.IsListType() || got.IsSetType()):
return want.FriendlyNameForConstraint() + " required"
case want.IsSetType() && !(got.IsListType() || got.IsSetType()):
return want.FriendlyNameForConstraint() + " required"
case want.IsMapType() && !got.IsMapType():
return want.FriendlyNameForConstraint() + " required"
}
// If the kinds are matched well enough then we'll check the element types.
gotEty := got.ElementType()
wantEty := want.ElementType()
noun := "element type"
switch {
case want.IsListType():
noun = "list element type"
case want.IsSetType():
noun = "set element type"
case want.IsMapType():
noun = "map element type"
}
return fmt.Sprintf("incorrect %s: %s", noun, MismatchMessage(gotEty, wantEty))
}

83
vendor/github.com/zclconf/go-cty/cty/convert/public.go generated vendored Normal file
View File

@@ -0,0 +1,83 @@
package convert
import (
"errors"
"github.com/zclconf/go-cty/cty"
)
// This file contains the public interface of this package, which is intended
// to be a small, convenient interface designed for easy integration into
// a hypothetical language type checker and interpreter.
// Conversion is a named function type representing a conversion from a
// value of one type to a value of another type.
//
// The source type for a conversion is always the source type given to
// the function that returned the Conversion, but there is no way to recover
// that from a Conversion value itself. If a Conversion is given a value
// that is not of its expected type (with the exception of DynamicPseudoType,
// which is always supported) then the function may panic or produce undefined
// results.
type Conversion func(in cty.Value) (out cty.Value, err error)
// GetConversion returns a Conversion between the given in and out Types if
// a safe one is available, or returns nil otherwise.
func GetConversion(in cty.Type, out cty.Type) Conversion {
return retConversion(getConversion(in, out, false))
}
// GetConversionUnsafe returns a Conversion between the given in and out Types
// if either a safe or unsafe one is available, or returns nil otherwise.
func GetConversionUnsafe(in cty.Type, out cty.Type) Conversion {
return retConversion(getConversion(in, out, true))
}
// Convert returns the result of converting the given value to the given type
// if an safe or unsafe conversion is available, or returns an error if such a
// conversion is impossible.
//
// This is a convenience wrapper around calling GetConversionUnsafe and then
// immediately passing the given value to the resulting function.
func Convert(in cty.Value, want cty.Type) (cty.Value, error) {
if in.Type().Equals(want.WithoutOptionalAttributesDeep()) {
return in, nil
}
conv := GetConversionUnsafe(in.Type(), want)
if conv == nil {
return cty.NilVal, errors.New(MismatchMessage(in.Type(), want))
}
return conv(in)
}
// Unify attempts to find the most general type that can be converted from
// all of the given types. If this is possible, that type is returned along
// with a slice of necessary conversions for some of the given types.
//
// If no common supertype can be found, this function returns cty.NilType and
// a nil slice.
//
// If a common supertype *can* be found, the returned slice will always be
// non-nil and will contain a non-nil conversion for each given type that
// needs to be converted, with indices corresponding to the input slice.
// Any given type that does *not* need conversion (because it is already of
// the appropriate type) will have a nil Conversion.
//
// cty.DynamicPseudoType is, as usual, a special case. If the given type list
// contains a mixture of dynamic and non-dynamic types, the dynamic types are
// disregarded for type selection and a conversion is returned for them that
// will attempt a late conversion of the given value to the target type,
// failing with a conversion error if the eventual concrete type is not
// compatible. If *all* given types are DynamicPseudoType, or in the
// degenerate case of an empty slice of types, the returned type is itself
// cty.DynamicPseudoType and no conversions are attempted.
func Unify(types []cty.Type) (cty.Type, []Conversion) {
return unify(types, false)
}
// UnifyUnsafe is the same as Unify except that it may return unsafe
// conversions in situations where a safe conversion isn't also available.
func UnifyUnsafe(types []cty.Type) (cty.Type, []Conversion) {
return unify(types, true)
}

View File

@@ -0,0 +1,69 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
// sortTypes produces an ordering of the given types that serves as a
// preference order for the result of unification of the given types.
// The return value is a slice of indices into the given slice, and will
// thus always be the same length as the given slice.
//
// The goal is that the most general of the given types will appear first
// in the ordering. If there are uncomparable pairs of types in the list
// then they will appear in an undefined order, and the unification pass
// will presumably then fail.
func sortTypes(tys []cty.Type) []int {
l := len(tys)
// First we build a graph whose edges represent "more general than",
// which we will then do a topological sort of.
edges := make([][]int, l)
for i := 0; i < (l - 1); i++ {
for j := i + 1; j < l; j++ {
cmp := compareTypes(tys[i], tys[j])
switch {
case cmp < 0:
edges[i] = append(edges[i], j)
case cmp > 0:
edges[j] = append(edges[j], i)
}
}
}
// Compute the in-degree of each node
inDegree := make([]int, l)
for _, outs := range edges {
for _, j := range outs {
inDegree[j]++
}
}
// The array backing our result will double as our queue for visiting
// the nodes, with the queue slice moving along this array until it
// is empty and positioned at the end of the array. Thus our visiting
// order is also our result order.
result := make([]int, l)
queue := result[0:0]
// Initialize the queue with any item of in-degree 0, preserving
// their relative order.
for i, n := range inDegree {
if n == 0 {
queue = append(queue, i)
}
}
for len(queue) != 0 {
i := queue[0]
queue = queue[1:]
for _, j := range edges[i] {
inDegree[j]--
if inDegree[j] == 0 {
queue = append(queue, j)
}
}
}
return result
}

500
vendor/github.com/zclconf/go-cty/cty/convert/unify.go generated vendored Normal file
View File

@@ -0,0 +1,500 @@
package convert
import (
"github.com/zclconf/go-cty/cty"
)
// The current unify implementation is somewhat inefficient, but we accept this
// under the assumption that it will generally be used with small numbers of
// types and with types of reasonable complexity. However, it does have a
// "happy path" where all of the given types are equal.
//
// This function is likely to have poor performance in cases where any given
// types are very complex (lots of deeply-nested structures) or if the list
// of types itself is very large. In particular, it will walk the nested type
// structure under the given types several times, especially when given a
// list of types for which unification is not possible, since each permutation
// will be tried to determine that result.
func unify(types []cty.Type, unsafe bool) (cty.Type, []Conversion) {
if len(types) == 0 {
// Degenerate case
return cty.NilType, nil
}
// If all of the given types are of the same structural kind, we may be
// able to construct a new type that they can all be unified to, even if
// that is not one of the given types. We must try this before the general
// behavior below because in unsafe mode we can convert an object type to
// a subset of that type, which would be a much less useful conversion for
// unification purposes.
{
mapCt := 0
listCt := 0
setCt := 0
objectCt := 0
tupleCt := 0
dynamicCt := 0
for _, ty := range types {
switch {
case ty.IsMapType():
mapCt++
case ty.IsListType():
listCt++
case ty.IsSetType():
setCt++
case ty.IsObjectType():
objectCt++
case ty.IsTupleType():
tupleCt++
case ty == cty.DynamicPseudoType:
dynamicCt++
default:
break
}
}
switch {
case mapCt > 0 && (mapCt+dynamicCt) == len(types):
return unifyCollectionTypes(cty.Map, types, unsafe, dynamicCt > 0)
case mapCt > 0 && (mapCt+objectCt+dynamicCt) == len(types):
// Objects often contain map data, but are not directly typed as
// such due to language constructs or function types. Try to unify
// them as maps first before falling back to heterogeneous type
// conversion.
ty, convs := unifyObjectsAsMaps(types, unsafe)
// If we got a map back, we know the unification was successful.
if ty.IsMapType() {
return ty, convs
}
case listCt > 0 && (listCt+dynamicCt) == len(types):
return unifyCollectionTypes(cty.List, types, unsafe, dynamicCt > 0)
case listCt > 0 && (listCt+tupleCt+dynamicCt) == len(types):
// Tuples are often lists in disguise, and we may be able to
// unify them as such.
ty, convs := unifyTuplesAsList(types, unsafe)
// if we got a list back, we know the unification was successful.
// Otherwise we will fall back to the heterogeneous type codepath.
if ty.IsListType() {
return ty, convs
}
case setCt > 0 && (setCt+dynamicCt) == len(types):
return unifyCollectionTypes(cty.Set, types, unsafe, dynamicCt > 0)
case objectCt > 0 && (objectCt+dynamicCt) == len(types):
return unifyObjectTypes(types, unsafe, dynamicCt > 0)
case tupleCt > 0 && (tupleCt+dynamicCt) == len(types):
return unifyTupleTypes(types, unsafe, dynamicCt > 0)
case objectCt > 0 && tupleCt > 0:
// Can never unify object and tuple types since they have incompatible kinds
return cty.NilType, nil
}
}
prefOrder := sortTypes(types)
// sortTypes gives us an order where earlier items are preferable as
// our result type. We'll now walk through these and choose the first
// one we encounter for which conversions exist for all source types.
conversions := make([]Conversion, len(types))
Preferences:
for _, wantTypeIdx := range prefOrder {
wantType := types[wantTypeIdx]
for i, tryType := range types {
if i == wantTypeIdx {
// Don't need to convert our wanted type to itself
conversions[i] = nil
continue
}
if tryType.Equals(wantType) {
conversions[i] = nil
continue
}
if unsafe {
conversions[i] = GetConversionUnsafe(tryType, wantType)
} else {
conversions[i] = GetConversion(tryType, wantType)
}
if conversions[i] == nil {
// wantType is not a suitable unification type, so we'll
// try the next one in our preference order.
continue Preferences
}
}
return wantType, conversions
}
// If we fall out here, no unification is possible
return cty.NilType, nil
}
// unifyTuplesAsList attempts to first see if the tuples unify as lists, then
// re-unifies the given types with the list in place of the tuples.
func unifyTuplesAsList(types []cty.Type, unsafe bool) (cty.Type, []Conversion) {
var tuples []cty.Type
var tupleIdxs []int
for i, t := range types {
if t.IsTupleType() {
tuples = append(tuples, t)
tupleIdxs = append(tupleIdxs, i)
}
}
ty, tupleConvs := unifyTupleTypesToList(tuples, unsafe)
if !ty.IsListType() {
return cty.NilType, nil
}
// the tuples themselves unified as a list, get the overall
// unification with this list type instead of the tuple.
// make a copy of the types, so we can fallback to the standard
// codepath if something went wrong
listed := make([]cty.Type, len(types))
copy(listed, types)
for _, idx := range tupleIdxs {
listed[idx] = ty
}
newTy, convs := unify(listed, unsafe)
if !newTy.IsListType() {
return cty.NilType, nil
}
// we have a good conversion, wrap the nested tuple conversions.
// We know the tuple conversion is not nil, because we went from tuple to
// list
for i, idx := range tupleIdxs {
listConv := convs[idx]
tupleConv := tupleConvs[i]
if listConv == nil {
convs[idx] = tupleConv
continue
}
convs[idx] = func(in cty.Value) (out cty.Value, err error) {
out, err = tupleConv(in)
if err != nil {
return out, err
}
return listConv(in)
}
}
return newTy, convs
}
// unifyObjectsAsMaps attempts to first see if the objects unify as maps, then
// re-unifies the given types with the map in place of the objects.
func unifyObjectsAsMaps(types []cty.Type, unsafe bool) (cty.Type, []Conversion) {
var objs []cty.Type
var objIdxs []int
for i, t := range types {
if t.IsObjectType() {
objs = append(objs, t)
objIdxs = append(objIdxs, i)
}
}
ty, objConvs := unifyObjectTypesToMap(objs, unsafe)
if !ty.IsMapType() {
return cty.NilType, nil
}
// the objects themselves unified as a map, get the overall
// unification with this map type instead of the object.
// Make a copy of the types, so we can fallback to the standard codepath if
// something went wrong without changing the original types.
mapped := make([]cty.Type, len(types))
copy(mapped, types)
for _, idx := range objIdxs {
mapped[idx] = ty
}
newTy, convs := unify(mapped, unsafe)
if !newTy.IsMapType() {
return cty.NilType, nil
}
// we have a good conversion, so wrap the nested object conversions.
// We know the object conversion is not nil, because we went from object to
// map.
for i, idx := range objIdxs {
mapConv := convs[idx]
objConv := objConvs[i]
if mapConv == nil {
convs[idx] = objConv
continue
}
convs[idx] = func(in cty.Value) (out cty.Value, err error) {
out, err = objConv(in)
if err != nil {
return out, err
}
return mapConv(in)
}
}
return newTy, convs
}
func unifyCollectionTypes(collectionType func(cty.Type) cty.Type, types []cty.Type, unsafe bool, hasDynamic bool) (cty.Type, []Conversion) {
// If we had any dynamic types in the input here then we can't predict
// what path we'll take through here once these become known types, so
// we'll conservatively produce DynamicVal for these.
if hasDynamic {
return unifyAllAsDynamic(types)
}
elemTypes := make([]cty.Type, 0, len(types))
for _, ty := range types {
elemTypes = append(elemTypes, ty.ElementType())
}
retElemType, _ := unify(elemTypes, unsafe)
if retElemType == cty.NilType {
return cty.NilType, nil
}
retTy := collectionType(retElemType)
conversions := make([]Conversion, len(types))
for i, ty := range types {
if ty.Equals(retTy) {
continue
}
if unsafe {
conversions[i] = GetConversionUnsafe(ty, retTy)
} else {
conversions[i] = GetConversion(ty, retTy)
}
if conversions[i] == nil {
// Shouldn't be reachable, since we were able to unify
return cty.NilType, nil
}
}
return retTy, conversions
}
func unifyObjectTypes(types []cty.Type, unsafe bool, hasDynamic bool) (cty.Type, []Conversion) {
// If we had any dynamic types in the input here then we can't predict
// what path we'll take through here once these become known types, so
// we'll conservatively produce DynamicVal for these.
if hasDynamic {
return unifyAllAsDynamic(types)
}
// There are two different ways we can succeed here:
// - If all of the given object types have the same set of attribute names
// and the corresponding types are all unifyable, then we construct that
// type.
// - If the given object types have different attribute names or their
// corresponding types are not unifyable, we'll instead try to unify
// all of the attribute types together to produce a map type.
//
// Our unification behavior is intentionally stricter than our conversion
// behavior for subset object types because user intent is different with
// unification use-cases: it makes sense to allow {"foo":true} to convert
// to emptyobjectval, but unifying an object with an attribute with the
// empty object type should be an error because unifying to the empty
// object type would be suprising and useless.
firstAttrs := types[0].AttributeTypes()
for _, ty := range types[1:] {
thisAttrs := ty.AttributeTypes()
if len(thisAttrs) != len(firstAttrs) {
// If number of attributes is different then there can be no
// object type in common.
return unifyObjectTypesToMap(types, unsafe)
}
for name := range thisAttrs {
if _, ok := firstAttrs[name]; !ok {
// If attribute names don't exactly match then there can be
// no object type in common.
return unifyObjectTypesToMap(types, unsafe)
}
}
}
// If we get here then we've proven that all of the given object types
// have exactly the same set of attribute names, though the types may
// differ.
retAtys := make(map[string]cty.Type)
atysAcross := make([]cty.Type, len(types))
for name := range firstAttrs {
for i, ty := range types {
atysAcross[i] = ty.AttributeType(name)
}
retAtys[name], _ = unify(atysAcross, unsafe)
if retAtys[name] == cty.NilType {
// Cannot unify this attribute alone, which means that unification
// of everything down to a map type can't be possible either.
return cty.NilType, nil
}
}
retTy := cty.Object(retAtys)
conversions := make([]Conversion, len(types))
for i, ty := range types {
if ty.Equals(retTy) {
continue
}
if unsafe {
conversions[i] = GetConversionUnsafe(ty, retTy)
} else {
conversions[i] = GetConversion(ty, retTy)
}
if conversions[i] == nil {
// Shouldn't be reachable, since we were able to unify
return unifyObjectTypesToMap(types, unsafe)
}
}
return retTy, conversions
}
func unifyObjectTypesToMap(types []cty.Type, unsafe bool) (cty.Type, []Conversion) {
// This is our fallback case for unifyObjectTypes, where we see if we can
// construct a map type that can accept all of the attribute types.
var atys []cty.Type
for _, ty := range types {
for _, aty := range ty.AttributeTypes() {
atys = append(atys, aty)
}
}
ety, _ := unify(atys, unsafe)
if ety == cty.NilType {
return cty.NilType, nil
}
retTy := cty.Map(ety)
conversions := make([]Conversion, len(types))
for i, ty := range types {
if ty.Equals(retTy) {
continue
}
if unsafe {
conversions[i] = GetConversionUnsafe(ty, retTy)
} else {
conversions[i] = GetConversion(ty, retTy)
}
if conversions[i] == nil {
return cty.NilType, nil
}
}
return retTy, conversions
}
func unifyTupleTypes(types []cty.Type, unsafe bool, hasDynamic bool) (cty.Type, []Conversion) {
// If we had any dynamic types in the input here then we can't predict
// what path we'll take through here once these become known types, so
// we'll conservatively produce DynamicVal for these.
if hasDynamic {
return unifyAllAsDynamic(types)
}
// There are two different ways we can succeed here:
// - If all of the given tuple types have the same sequence of element types
// and the corresponding types are all unifyable, then we construct that
// type.
// - If the given tuple types have different element types or their
// corresponding types are not unifyable, we'll instead try to unify
// all of the elements types together to produce a list type.
firstEtys := types[0].TupleElementTypes()
for _, ty := range types[1:] {
thisEtys := ty.TupleElementTypes()
if len(thisEtys) != len(firstEtys) {
// If number of elements is different then there can be no
// tuple type in common.
return unifyTupleTypesToList(types, unsafe)
}
}
// If we get here then we've proven that all of the given tuple types
// have the same number of elements, though the types may differ.
retEtys := make([]cty.Type, len(firstEtys))
atysAcross := make([]cty.Type, len(types))
for idx := range firstEtys {
for tyI, ty := range types {
atysAcross[tyI] = ty.TupleElementTypes()[idx]
}
retEtys[idx], _ = unify(atysAcross, unsafe)
if retEtys[idx] == cty.NilType {
// Cannot unify this element alone, which means that unification
// of everything down to a map type can't be possible either.
return cty.NilType, nil
}
}
retTy := cty.Tuple(retEtys)
conversions := make([]Conversion, len(types))
for i, ty := range types {
if ty.Equals(retTy) {
continue
}
if unsafe {
conversions[i] = GetConversionUnsafe(ty, retTy)
} else {
conversions[i] = GetConversion(ty, retTy)
}
if conversions[i] == nil {
return unifyTupleTypesToList(types, unsafe)
}
}
return retTy, conversions
}
func unifyTupleTypesToList(types []cty.Type, unsafe bool) (cty.Type, []Conversion) {
// This is our fallback case for unifyTupleTypes, where we see if we can
// construct a list type that can accept all of the element types.
var etys []cty.Type
for _, ty := range types {
for _, ety := range ty.TupleElementTypes() {
etys = append(etys, ety)
}
}
ety, _ := unify(etys, unsafe)
if ety == cty.NilType {
return cty.NilType, nil
}
retTy := cty.List(ety)
conversions := make([]Conversion, len(types))
for i, ty := range types {
if ty.Equals(retTy) {
continue
}
if unsafe {
conversions[i] = GetConversionUnsafe(ty, retTy)
} else {
conversions[i] = GetConversion(ty, retTy)
}
if conversions[i] == nil {
// no conversion was found
return cty.NilType, nil
}
}
return retTy, conversions
}
func unifyAllAsDynamic(types []cty.Type) (cty.Type, []Conversion) {
conversions := make([]Conversion, len(types))
for i := range conversions {
conversions[i] = func(cty.Value) (cty.Value, error) {
return cty.DynamicVal, nil
}
}
return cty.DynamicPseudoType, conversions
}

26
vendor/github.com/zclconf/go-cty/cty/ctystrings/doc.go generated vendored Normal file
View File

@@ -0,0 +1,26 @@
// Package ctystrings is a collection of string manipulation utilities which
// intend to help application developers implement string-manipulation
// functionality in a way that respects the cty model of strings, even when
// they are working in the realm of Go strings.
//
// cty strings are, internally, NFC-normalized as defined in Unicode Standard
// Annex #15 and encoded as UTF-8.
//
// When working with [cty.Value] of string type cty manages this
// automatically as an implementation detail, but when applications call
// [Value.AsString] they will receive a value that has been subjected to that
// normalization, and so may need to take that normalization into account when
// manipulating the resulting string or comparing it with other Go strings
// that did not originate in a [cty.Value].
//
// Although the core representation of [cty.String] only considers whole
// strings, it's also conventional in other locations such as the standard
// library functions to consider strings as being sequences of grapheme
// clusters as defined by Unicode Standard Annex #29, which adds further
// rules about combining multiple consecutive codepoints together into a
// single user-percieved character. Functions that work with substrings should
// always use grapheme clusters as their smallest unit of splitting strings,
// and never break strings in the middle of a grapheme cluster. The functions
// in this package respect that convention unless otherwise stated in their
// documentation.
package ctystrings

View File

@@ -0,0 +1,14 @@
package ctystrings
import (
"golang.org/x/text/unicode/norm"
)
// Normalize applies NFC normalization to the given string, returning the
// transformed string.
//
// This function achieves the same effect as wrapping a string in a value
// using [cty.StringVal] and then unwrapping it again using [Value.AsString].
func Normalize(str string) string {
return norm.NFC.String(str)
}

View File

@@ -0,0 +1,139 @@
package ctystrings
import (
"fmt"
"unicode/utf8"
"github.com/apparentlymart/go-textseg/v13/textseg"
"golang.org/x/text/unicode/norm"
)
// SafeKnownPrefix takes a string intended to represent a known prefix of
// another string and modifies it so that it would be safe to use with
// byte-based prefix matching against another NFC-normalized string. It
// also takes into account grapheme cluster boundaries and trims off any
// suffix that could potentially be an incomplete grapheme cluster.
//
// Specifically, SafeKnownPrefix first applies NFC normalization to the prefix
// and then trims off one or more characters from the end of the string which
// could potentially be transformed into a different character if another
// string were appended to it. For example, a trailing latin letter will
// typically be trimmed because appending a combining diacritic mark would
// transform it into a different character.
//
// This transformation is important whenever the remainder of the string is
// arbitrary user input not directly controlled by the application. If an
// application can guarantee that the remainder of the string will not begin
// with combining marks then it is safe to instead just normalize the prefix
// string with [Normalize].
//
// Note that this function only takes into account normalization boundaries
// and does _not_ take into account grapheme cluster boundaries as defined
// by Unicode Standard Annex #29.
func SafeKnownPrefix(prefix string) string {
prefix = Normalize(prefix)
// Our starting approach here is essentially what a streaming parser would
// do when consuming a Unicode string in chunks and needing to determine
// what prefix of the current buffer is safe to process without waiting for
// more information, which is described in TR15 section 13.1
// "Buffering with Unicode Normalization":
// https://unicode.org/reports/tr15/#Buffering_with_Unicode_Normalization
//
// The general idea here is to find the last character in the string that
// could potentially start a sequence of codepoints that would combine
// together, and then truncate the string to exclude that character and
// everything after it.
form := norm.NFC
lastBoundary := form.LastBoundary([]byte(prefix))
if lastBoundary != -1 && lastBoundary != len(prefix) {
prefix = prefix[:lastBoundary]
// If we get here then we've already shortened the prefix and so
// further analysis below is unnecessary because it would be relying
// on an incomplete prefix anyway.
return prefix
}
// Now we'll use the textseg package's grapheme cluster scanner to scan
// as far through the string as we can without the scanner telling us
// that it would need more bytes to decide.
//
// This step is conservative because the grapheme cluster rules are not
// designed with prefix-matching in mind. In the base case we'll just
// always discard the last grapheme cluster, although we do have some
// special cases for trailing codepoints that can't possibly combine with
// subsequent codepoints to form a single grapheme cluster and which seem
// likely to arise often in practical use.
remain := []byte(prefix)
prevBoundary := 0
thisBoundary := 0
for len(remain) > 0 {
advance, _, err := textseg.ScanGraphemeClusters(remain, false)
if err != nil {
// ScanGraphemeClusters should never return an error because
// any sequence of valid UTF-8 encodings is valid input.
panic(fmt.Sprintf("textseg.ScanGraphemeClusters returned error: %s", err))
}
if advance == 0 {
// If we have at least one byte remaining but the scanner cannot
// advance then that means the remainder might be an incomplete
// grapheme cluster and so we need to stop here, discarding the
// rest of the input. However, we do now know that we can safely
// include what we found on the previous iteration of this loop.
prevBoundary = thisBoundary
break
}
prevBoundary = thisBoundary
thisBoundary += advance
remain = remain[advance:]
}
// This is our heuristic for detecting cases where we can be sure that
// the above algorithm was too conservative because the last segment
// we found is definitely not subject to the grapheme cluster "do not split"
// rules.
suspect := prefix[prevBoundary:thisBoundary]
if sequenceMustEndGraphemeCluster(suspect) {
prevBoundary = thisBoundary
}
return prefix[:prevBoundary]
}
// sequenceMustEndGraphemeCluster is a heuristic we use to avoid discarding
// the final grapheme cluster of a prefix in SafeKnownPrefix by recognizing
// that a particular sequence is one known to not be subject to any of
// the UAX29 "do not break" rules.
//
// If this function returns true then it is safe to include the given byte
// sequence at the end of a safe prefix. Otherwise we don't know whether or
// not it is safe.
func sequenceMustEndGraphemeCluster(s string) bool {
// For now we're only considering sequences that represent a single
// codepoint. We'll assume that any sequence of two or more codepoints
// that could be a grapheme cluster might be extendable.
if utf8.RuneCountInString(s) != 1 {
return false
}
r, _ := utf8.DecodeRuneInString(s)
// Our initial ruleset is focused on characters that are commonly used
// as delimiters in text intended for both human and machine use, such
// as JSON documents.
//
// We don't include any letters or digits of any script here intentionally
// because those are the ones most likely to be subject to combining rules
// in either current or future Unicode specifications.
//
// We can safely grow this set over time, but we should be very careful
// about shrinking it because it could cause value refinements to loosen
// and thus cause results that were once known to become unknown.
switch r {
case '-', '_', ':', ';', '/', '\\', ',', '.', '(', ')', '{', '}', '[', ']', '|', '?', '!', '~', ' ', '\t', '@', '#', '$', '%', '^', '&', '*', '+', '"', '\'':
return true
default:
return false
}
}

18
vendor/github.com/zclconf/go-cty/cty/doc.go generated vendored Normal file
View File

@@ -0,0 +1,18 @@
// Package cty (pronounced see-tie) provides some infrastructure for a type
// system that might be useful for applications that need to represent
// configuration values provided by the user whose types are not known
// at compile time, particularly if the calling application also allows
// such values to be used in expressions.
//
// The type system consists of primitive types Number, String and Bool, as
// well as List and Map collection types and Object types that can have
// arbitrarily-typed sets of attributes.
//
// A set of operations is defined on these types, which is accessible via
// the wrapper struct Value, which annotates the raw, internal representation
// of a value with its corresponding type.
//
// This package is oriented towards being a building block for configuration
// languages used to bootstrap an application. It is not optimized for use
// in tight loops where CPU time or memory pressure are a concern.
package cty

View File

@@ -0,0 +1,194 @@
package cty
import (
"sort"
"github.com/zclconf/go-cty/cty/set"
)
// ElementIterator is the interface type returned by Value.ElementIterator to
// allow the caller to iterate over elements of a collection-typed value.
//
// Its usage pattern is as follows:
//
// it := val.ElementIterator()
// for it.Next() {
// key, val := it.Element()
// // ...
// }
type ElementIterator interface {
Next() bool
Element() (key Value, value Value)
}
func canElementIterator(val Value) bool {
switch {
case val.IsMarked():
return false
case val.ty.IsListType():
return true
case val.ty.IsMapType():
return true
case val.ty.IsSetType():
return true
case val.ty.IsTupleType():
return true
case val.ty.IsObjectType():
return true
default:
return false
}
}
func elementIterator(val Value) ElementIterator {
val.assertUnmarked()
switch {
case val.ty.IsListType():
return &listElementIterator{
ety: val.ty.ElementType(),
vals: val.v.([]interface{}),
idx: -1,
}
case val.ty.IsMapType():
// We iterate the keys in a predictable lexicographical order so
// that results will always be stable given the same input map.
rawMap := val.v.(map[string]interface{})
keys := make([]string, 0, len(rawMap))
for key := range rawMap {
keys = append(keys, key)
}
sort.Strings(keys)
return &mapElementIterator{
ety: val.ty.ElementType(),
vals: rawMap,
keys: keys,
idx: -1,
}
case val.ty.IsSetType():
rawSet := val.v.(set.Set[interface{}])
return &setElementIterator{
ety: val.ty.ElementType(),
setIt: rawSet.Iterator(),
}
case val.ty.IsTupleType():
return &tupleElementIterator{
etys: val.ty.TupleElementTypes(),
vals: val.v.([]interface{}),
idx: -1,
}
case val.ty.IsObjectType():
// We iterate the keys in a predictable lexicographical order so
// that results will always be stable given the same object type.
atys := val.ty.AttributeTypes()
keys := make([]string, 0, len(atys))
for key := range atys {
keys = append(keys, key)
}
sort.Strings(keys)
return &objectElementIterator{
atys: atys,
vals: val.v.(map[string]interface{}),
attrNames: keys,
idx: -1,
}
default:
panic("attempt to iterate on non-collection, non-tuple type")
}
}
type listElementIterator struct {
ety Type
vals []interface{}
idx int
}
func (it *listElementIterator) Element() (Value, Value) {
i := it.idx
return NumberIntVal(int64(i)), Value{
ty: it.ety,
v: it.vals[i],
}
}
func (it *listElementIterator) Next() bool {
it.idx++
return it.idx < len(it.vals)
}
type mapElementIterator struct {
ety Type
vals map[string]interface{}
keys []string
idx int
}
func (it *mapElementIterator) Element() (Value, Value) {
key := it.keys[it.idx]
return StringVal(key), Value{
ty: it.ety,
v: it.vals[key],
}
}
func (it *mapElementIterator) Next() bool {
it.idx++
return it.idx < len(it.keys)
}
type setElementIterator struct {
ety Type
setIt *set.Iterator[interface{}]
}
func (it *setElementIterator) Element() (Value, Value) {
val := Value{
ty: it.ety,
v: it.setIt.Value(),
}
return val, val
}
func (it *setElementIterator) Next() bool {
return it.setIt.Next()
}
type tupleElementIterator struct {
etys []Type
vals []interface{}
idx int
}
func (it *tupleElementIterator) Element() (Value, Value) {
i := it.idx
return NumberIntVal(int64(i)), Value{
ty: it.etys[i],
v: it.vals[i],
}
}
func (it *tupleElementIterator) Next() bool {
it.idx++
return it.idx < len(it.vals)
}
type objectElementIterator struct {
atys map[string]Type
vals map[string]interface{}
attrNames []string
idx int
}
func (it *objectElementIterator) Element() (Value, Value) {
key := it.attrNames[it.idx]
return StringVal(key), Value{
ty: it.atys[key],
v: it.vals[key],
}
}
func (it *objectElementIterator) Next() bool {
it.idx++
return it.idx < len(it.attrNames)
}

55
vendor/github.com/zclconf/go-cty/cty/error.go generated vendored Normal file
View File

@@ -0,0 +1,55 @@
package cty
import (
"fmt"
)
// PathError is a specialization of error that represents where in a
// potentially-deep data structure an error occured, using a Path.
type PathError struct {
error
Path Path
}
func errorf(path Path, f string, args ...interface{}) error {
// We need to copy the Path because often our caller builds it by
// continually mutating the same underlying buffer.
sPath := make(Path, len(path))
copy(sPath, path)
return PathError{
error: fmt.Errorf(f, args...),
Path: sPath,
}
}
// NewErrorf creates a new PathError for the current path by passing the
// given format and arguments to fmt.Errorf and then wrapping the result
// similarly to NewError.
func (p Path) NewErrorf(f string, args ...interface{}) error {
return errorf(p, f, args...)
}
// NewError creates a new PathError for the current path, wrapping the given
// error.
func (p Path) NewError(err error) error {
// if we're being asked to wrap an existing PathError then our new
// PathError will be the concatenation of the two paths, ensuring
// that we still get a single flat PathError that's thus easier for
// callers to deal with.
perr, wrappingPath := err.(PathError)
pathLen := len(p)
if wrappingPath {
pathLen = pathLen + len(perr.Path)
}
sPath := make(Path, pathLen)
copy(sPath, p)
if wrappingPath {
copy(sPath[len(p):], perr.Path)
}
return PathError{
error: err,
Path: sPath,
}
}

View File

@@ -0,0 +1,73 @@
package function
import (
"github.com/zclconf/go-cty/cty"
)
// Parameter represents a parameter to a function.
type Parameter struct {
// Name is an optional name for the argument. This package ignores this
// value, but callers may use it for documentation, etc.
Name string
// Description is an optional description for the argument.
Description string
// A type that any argument for this parameter must conform to.
// cty.DynamicPseudoType can be used, either at top-level or nested
// in a parameterized type, to indicate that any type should be
// permitted, to allow the definition of type-generic functions.
Type cty.Type
// If AllowNull is set then null values may be passed into this
// argument's slot in both the type-check function and the implementation
// function. If not set, such values are rejected by the built-in
// checking rules.
AllowNull bool
// If AllowUnknown is set then unknown values may be passed into this
// argument's slot in the implementation function. If not set, any
// unknown values will cause the function to immediately return
// an unkonwn value without calling the implementation function, thus
// freeing the function implementer from dealing with this case.
AllowUnknown bool
// If AllowDynamicType is set then DynamicVal may be passed into this
// argument's slot in the implementation function. If not set, any
// dynamic values will cause the function to immediately return
// DynamicVal value without calling the implementation function, thus
// freeing the function implementer from dealing with this case.
//
// Note that DynamicVal is also unknown, so in order to receive dynamic
// *values* it is also necessary to set AllowUnknown.
//
// However, it is valid to set AllowDynamicType without AllowUnknown, in
// which case a dynamic value may be passed to the type checking function
// but will not make it to the *implementation* function. Instead, an
// unknown value of the type returned by the type-check function will be
// returned. This is suggested for functions that have a static return
// type since it allows the return value to be typed even if the input
// values are not, thus improving the type-check accuracy of derived
// values.
AllowDynamicType bool
// If AllowMarked is set then marked values may be passed into this
// argument's slot in the implementation function. If not set, any
// marked value will be unmarked before calling and then the markings
// from that value will be applied automatically to the function result,
// ensuring that the marks get propagated in a simplistic way even if
// a function is unable to handle them.
//
// For any argument whose parameter has AllowMarked set, it's the
// function implementation's responsibility to Unmark the given value
// and propagate the marks appropriatedly to the result in order to
// avoid losing the marks. Application-specific functions might use
// special rules to selectively propagate particular marks.
//
// The automatic unmarking of values applies only to the main
// implementation function. In an application that uses marked values,
// the Type implementation for a function must always be prepared to accept
// marked values, which is easy to achieve by consulting only the type
// and ignoring the value itself.
AllowMarked bool
}

6
vendor/github.com/zclconf/go-cty/cty/function/doc.go generated vendored Normal file
View File

@@ -0,0 +1,6 @@
// Package function builds on the functionality of cty by modeling functions
// that operate on cty Values.
//
// Functions are, at their core, Go anonymous functions. However, this package
// wraps around them utility functions for parameter type checking, etc.
package function

50
vendor/github.com/zclconf/go-cty/cty/function/error.go generated vendored Normal file
View File

@@ -0,0 +1,50 @@
package function
import (
"fmt"
"runtime/debug"
)
// ArgError represents an error with one of the arguments in a call. The
// attribute Index represents the zero-based index of the argument in question.
//
// Its error *may* be a cty.PathError, in which case the error actually
// pertains to a nested value within the data structure passed as the argument.
type ArgError struct {
error
Index int
}
func NewArgErrorf(i int, f string, args ...interface{}) error {
return ArgError{
error: fmt.Errorf(f, args...),
Index: i,
}
}
func NewArgError(i int, err error) error {
return ArgError{
error: err,
Index: i,
}
}
// PanicError indicates that a panic occurred while executing either a
// function's type or implementation function. This is captured and wrapped
// into a normal error so that callers (expected to be language runtimes)
// are freed from having to deal with panics in buggy functions.
type PanicError struct {
Value interface{}
Stack []byte
}
func errorForPanic(val interface{}) error {
return PanicError{
Value: val,
Stack: debug.Stack(),
}
}
func (e PanicError) Error() string {
return fmt.Sprintf("panic in function implementation: %s\n%s", e.Value, e.Stack)
}

View File

@@ -0,0 +1,437 @@
package function
import (
"fmt"
"github.com/zclconf/go-cty/cty"
)
// Function represents a function. This is the main type in this package.
type Function struct {
spec *Spec
}
// Spec is the specification of a function, used to instantiate
// a new Function.
type Spec struct {
// Description is an optional description for the function specification.
Description string
// Params is a description of the positional parameters for the function.
// The standard checking logic rejects any calls that do not provide
// arguments conforming to this definition, freeing the function
// implementer from dealing with such inconsistencies.
Params []Parameter
// VarParam is an optional specification of additional "varargs" the
// function accepts. If this is non-nil then callers may provide an
// arbitrary number of additional arguments (after those matching with
// the fixed parameters in Params) that conform to the given specification,
// which will appear as additional values in the slices of values
// provided to the type and implementation functions.
VarParam *Parameter
// Type is the TypeFunc that decides the return type of the function
// given its arguments, which may be Unknown. See the documentation
// of TypeFunc for more information.
//
// Use StaticReturnType if the function's return type does not vary
// depending on its arguments.
Type TypeFunc
// RefineResult is an optional callback for describing additional
// refinements for the result value beyond what can be described using
// a type constraint.
//
// A refinement callback should always return the same builder it was
// given, typically after modifying it using the methods of
// [cty.RefinementBuilder].
//
// Any refinements described by this callback must hold for the entire
// range of results from the function. For refinements that only apply
// to certain results, use direct refinement within [Impl] instead.
RefineResult func(*cty.RefinementBuilder) *cty.RefinementBuilder
// Impl is the ImplFunc that implements the function's behavior.
//
// Functions are expected to behave as pure functions, and not create
// any visible side-effects.
//
// If a TypeFunc is also provided, the value returned from Impl *must*
// conform to the type it returns, or a call to the function will panic.
Impl ImplFunc
}
// New creates a new function with the given specification.
//
// After passing a Spec to this function, the caller must no longer read from
// or mutate it.
func New(spec *Spec) Function {
f := Function{
spec: spec,
}
return f
}
// TypeFunc is a callback type for determining the return type of a function
// given its arguments.
//
// Any of the values passed to this function may be unknown, even if the
// parameters are not configured to accept unknowns.
//
// If any of the given values are *not* unknown, the TypeFunc may use the
// values for pre-validation and for choosing the return type. For example,
// a hypothetical JSON-unmarshalling function could return
// cty.DynamicPseudoType if the given JSON string is unknown, but return
// a concrete type based on the JSON structure if the JSON string is already
// known.
type TypeFunc func(args []cty.Value) (cty.Type, error)
// ImplFunc is a callback type for the main implementation of a function.
//
// "args" are the values for the arguments, and this slice will always be at
// least as long as the argument definition slice for the function.
//
// "retType" is the type returned from the Type callback, included as a
// convenience to avoid the need to re-compute the return type for generic
// functions whose return type is a function of the arguments.
type ImplFunc func(args []cty.Value, retType cty.Type) (cty.Value, error)
// StaticReturnType returns a TypeFunc that always returns the given type.
//
// This is provided as a convenience for defining a function whose return
// type does not depend on the argument types.
func StaticReturnType(ty cty.Type) TypeFunc {
return func([]cty.Value) (cty.Type, error) {
return ty, nil
}
}
// ReturnType returns the return type of a function given a set of candidate
// argument types, or returns an error if the given types are unacceptable.
//
// If the caller already knows values for at least some of the arguments
// it can be better to call ReturnTypeForValues, since certain functions may
// determine their return types from their values and return DynamicVal if
// the values are unknown.
func (f Function) ReturnType(argTypes []cty.Type) (cty.Type, error) {
vals := make([]cty.Value, len(argTypes))
for i, ty := range argTypes {
vals[i] = cty.UnknownVal(ty)
}
return f.ReturnTypeForValues(vals)
}
// ReturnTypeForValues is similar to ReturnType but can be used if the caller
// already knows the values of some or all of the arguments, in which case
// the function may be able to determine a more definite result if its
// return type depends on the argument *values*.
//
// For any arguments whose values are not known, pass an Unknown value of
// the appropriate type.
func (f Function) ReturnTypeForValues(args []cty.Value) (ty cty.Type, err error) {
var posArgs []cty.Value
var varArgs []cty.Value
if f.spec.VarParam == nil {
if len(args) != len(f.spec.Params) {
return cty.Type{}, fmt.Errorf(
"wrong number of arguments (%d required; %d given)",
len(f.spec.Params), len(args),
)
}
posArgs = args
varArgs = nil
} else {
if len(args) < len(f.spec.Params) {
return cty.Type{}, fmt.Errorf(
"wrong number of arguments (at least %d required; %d given)",
len(f.spec.Params), len(args),
)
}
posArgs = args[0:len(f.spec.Params)]
varArgs = args[len(f.spec.Params):]
}
for i, spec := range f.spec.Params {
val := posArgs[i]
if val.ContainsMarked() && !spec.AllowMarked {
// During type checking we just unmark values and discard their
// marks, under the assumption that during actual execution of
// the function we'll do similarly and then re-apply the marks
// afterwards. Note that this does mean that a function that
// inspects values (rather than just types) in its Type
// implementation can potentially fail to take into account marks,
// unless it specifically opts in to seeing them.
unmarked, _ := val.UnmarkDeep()
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[i] = unmarked
args = newArgs
}
if val.IsNull() && !spec.AllowNull {
return cty.Type{}, NewArgErrorf(i, "argument must not be null")
}
// AllowUnknown is ignored for type-checking, since we expect to be
// able to type check with unknown values. We *do* still need to deal
// with DynamicPseudoType here though, since the Type function might
// not be ready to deal with that.
if val.Type() == cty.DynamicPseudoType {
if !spec.AllowDynamicType {
return cty.DynamicPseudoType, nil
}
} else if errs := val.Type().TestConformance(spec.Type); errs != nil {
// For now we'll just return the first error in the set, since
// we don't have a good way to return the whole list here.
// Would be good to do something better at some point...
return cty.Type{}, NewArgError(i, errs[0])
}
}
if varArgs != nil {
spec := f.spec.VarParam
for i, val := range varArgs {
realI := i + len(posArgs)
if val.ContainsMarked() && !spec.AllowMarked {
// See the similar block in the loop above for what's going on here.
unmarked, _ := val.UnmarkDeep()
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[realI] = unmarked
args = newArgs
}
if val.IsNull() && !spec.AllowNull {
return cty.Type{}, NewArgErrorf(realI, "argument must not be null")
}
if val.Type() == cty.DynamicPseudoType {
if !spec.AllowDynamicType {
return cty.DynamicPseudoType, nil
}
} else if errs := val.Type().TestConformance(spec.Type); errs != nil {
// For now we'll just return the first error in the set, since
// we don't have a good way to return the whole list here.
// Would be good to do something better at some point...
return cty.Type{}, NewArgError(i, errs[0])
}
}
}
// Intercept any panics from the function and return them as normal errors,
// so a calling language runtime doesn't need to deal with panics.
defer func() {
if r := recover(); r != nil {
ty = cty.NilType
err = errorForPanic(r)
}
}()
return f.spec.Type(args)
}
// Call actually calls the function with the given arguments, which must
// conform to the function's parameter specification or an error will be
// returned.
func (f Function) Call(args []cty.Value) (val cty.Value, err error) {
expectedType, err := f.ReturnTypeForValues(args)
if err != nil {
return cty.NilVal, err
}
if refineResult := f.spec.RefineResult; refineResult != nil {
// If this function has a refinement callback then we'll refine
// our result value in the same way regardless of how we return.
// It's the function author's responsibility to ensure that the
// refinements they specify are valid for the full range of possible
// return values from the function. If not, this will panic when
// detecting an inconsistency.
defer func() {
if val != cty.NilVal {
if val.IsKnown() || val.Type() != cty.DynamicPseudoType {
val = val.RefineWith(refineResult)
}
}
}()
}
// Type checking already dealt with most situations relating to our
// parameter specification, but we still need to deal with unknown
// values and marked values.
posArgs := args[:len(f.spec.Params)]
varArgs := args[len(f.spec.Params):]
var resultMarks []cty.ValueMarks
for i, spec := range f.spec.Params {
val := posArgs[i]
if !val.IsKnown() && !spec.AllowUnknown {
return cty.UnknownVal(expectedType), nil
}
if !spec.AllowMarked {
unwrappedVal, marks := val.UnmarkDeep()
if len(marks) > 0 {
// In order to avoid additional overhead on applications that
// are not using marked values, we copy the given args only
// if we encounter a marked value we need to unmark. However,
// as a consequence we end up doing redundant copying if multiple
// marked values need to be unwrapped. That seems okay because
// argument lists are generally small.
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[i] = unwrappedVal
resultMarks = append(resultMarks, marks)
args = newArgs
}
}
}
if f.spec.VarParam != nil {
spec := f.spec.VarParam
for i, val := range varArgs {
if !val.IsKnown() && !spec.AllowUnknown {
return cty.UnknownVal(expectedType), nil
}
if !spec.AllowMarked {
unwrappedVal, marks := val.UnmarkDeep()
if len(marks) > 0 {
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[len(posArgs)+i] = unwrappedVal
resultMarks = append(resultMarks, marks)
args = newArgs
}
}
}
}
var retVal cty.Value
{
// Intercept any panics from the function and return them as normal errors,
// so a calling language runtime doesn't need to deal with panics.
defer func() {
if r := recover(); r != nil {
val = cty.NilVal
err = errorForPanic(r)
}
}()
retVal, err = f.spec.Impl(args, expectedType)
if err != nil {
return cty.NilVal, err
}
if len(resultMarks) > 0 {
retVal = retVal.WithMarks(resultMarks...)
}
}
// Returned value must conform to what the Type function expected, to
// protect callers from having to deal with inconsistencies.
if errs := retVal.Type().TestConformance(expectedType); errs != nil {
panic(fmt.Errorf(
"returned value %#v does not conform to expected return type %#v: %s",
retVal, expectedType, errs[0],
))
}
return retVal, nil
}
// ProxyFunc the type returned by the method Function.Proxy.
type ProxyFunc func(args ...cty.Value) (cty.Value, error)
// Proxy returns a function that can be called with cty.Value arguments
// to run the function. This is provided as a convenience for when using
// a function directly within Go code.
func (f Function) Proxy() ProxyFunc {
return func(args ...cty.Value) (cty.Value, error) {
return f.Call(args)
}
}
// Params returns information about the function's fixed positional parameters.
// This does not include information about any variadic arguments accepted;
// for that, call VarParam.
func (f Function) Params() []Parameter {
new := make([]Parameter, len(f.spec.Params))
copy(new, f.spec.Params)
return new
}
// VarParam returns information about the variadic arguments the function
// expects, or nil if the function is not variadic.
func (f Function) VarParam() *Parameter {
if f.spec.VarParam == nil {
return nil
}
ret := *f.spec.VarParam
return &ret
}
// Description returns a human-readable description of the function.
func (f Function) Description() string {
return f.spec.Description
}
// WithNewDescriptions returns a new function that has the same signature
// and implementation as the receiver but has the function description and
// the parameter descriptions replaced with those given in the arguments.
//
// All descriptions may be given as an empty string to specify that there
// should be no description at all.
//
// The paramDescs argument must match the number of parameters
// the reciever expects, or this function will panic. If the function has a
// VarParam then that counts as one parameter for the sake of this rule. The
// given descriptions will be assigned in order starting with the positional
// arguments in their declared order, followed by the variadic parameter if
// any.
//
// As a special case, WithNewDescriptions will accept a paramDescs which
// does not cover the reciever's variadic parameter (if any), so that it's
// possible to add a variadic parameter to a function which didn't previously
// have one without that being a breaking change for an existing caller using
// WithNewDescriptions against that function. In this case the base description
// of the variadic parameter will be preserved.
func (f Function) WithNewDescriptions(funcDesc string, paramDescs []string) Function {
retSpec := *f.spec // shallow copy of the reciever
retSpec.Description = funcDesc
retSpec.Params = make([]Parameter, len(f.spec.Params))
copy(retSpec.Params, f.spec.Params) // shallow copy of positional parameters
if f.spec.VarParam != nil {
retVarParam := *f.spec.VarParam // shallow copy of variadic parameter
retSpec.VarParam = &retVarParam
}
if retSpec.VarParam != nil {
if with, without := len(retSpec.Params)+1, len(retSpec.Params); len(paramDescs) != with && len(paramDescs) != without {
panic(fmt.Sprintf("paramDescs must have length of either %d or %d", with, without))
}
} else {
if want := len(retSpec.Params); len(paramDescs) != want {
panic(fmt.Sprintf("paramDescs must have length %d", want))
}
}
posParamDescs := paramDescs[:len(retSpec.Params)]
varParamDescs := paramDescs[len(retSpec.Params):] // guaranteed to be zero or one elements because of the rules above
for i, desc := range posParamDescs {
retSpec.Params[i].Description = desc
}
for _, desc := range varParamDescs {
retSpec.VarParam.Description = desc
}
return New(&retSpec)
}

View File

@@ -0,0 +1,84 @@
package stdlib
import (
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
var NotFunc = function.New(&function.Spec{
Description: `Applies the logical NOT operation to the given boolean value.`,
Params: []function.Parameter{
{
Name: "val",
Type: cty.Bool,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return args[0].Not(), nil
},
})
var AndFunc = function.New(&function.Spec{
Description: `Applies the logical AND operation to the given boolean values.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Bool,
AllowDynamicType: true,
AllowMarked: true,
},
{
Name: "b",
Type: cty.Bool,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return args[0].And(args[1]), nil
},
})
var OrFunc = function.New(&function.Spec{
Description: `Applies the logical OR operation to the given boolean values.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Bool,
AllowDynamicType: true,
AllowMarked: true,
},
{
Name: "b",
Type: cty.Bool,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return args[0].Or(args[1]), nil
},
})
// Not returns the logical complement of the given boolean value.
func Not(num cty.Value) (cty.Value, error) {
return NotFunc.Call([]cty.Value{num})
}
// And returns true if and only if both of the given boolean values are true.
func And(a, b cty.Value) (cty.Value, error) {
return AndFunc.Call([]cty.Value{a, b})
}
// Or returns true if either of the given boolean values are true.
func Or(a, b cty.Value) (cty.Value, error) {
return OrFunc.Call([]cty.Value{a, b})
}

View File

@@ -0,0 +1,116 @@
package stdlib
import (
"fmt"
"reflect"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/gocty"
)
// Bytes is a capsule type that can be used with the binary functions to
// support applications that need to support raw buffers in addition to
// UTF-8 strings.
var Bytes = cty.Capsule("bytes", reflect.TypeOf([]byte(nil)))
// BytesVal creates a new Bytes value from the given buffer, which must be
// non-nil or this function will panic.
//
// Once a byte slice has been wrapped in a Bytes capsule, its underlying array
// must be considered immutable.
func BytesVal(buf []byte) cty.Value {
if buf == nil {
panic("can't make Bytes value from nil slice")
}
return cty.CapsuleVal(Bytes, &buf)
}
// BytesLen is a Function that returns the length of the buffer encapsulated
// in a Bytes value.
var BytesLenFunc = function.New(&function.Spec{
Description: `Returns the total number of bytes in the given buffer.`,
Params: []function.Parameter{
{
Name: "buf",
Type: Bytes,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
bufPtr := args[0].EncapsulatedValue().(*[]byte)
return cty.NumberIntVal(int64(len(*bufPtr))), nil
},
})
// BytesSlice is a Function that returns a slice of the given Bytes value.
var BytesSliceFunc = function.New(&function.Spec{
Description: `Extracts a subslice from the given buffer.`,
Params: []function.Parameter{
{
Name: "buf",
Type: Bytes,
AllowDynamicType: true,
},
{
Name: "offset",
Type: cty.Number,
AllowDynamicType: true,
},
{
Name: "length",
Type: cty.Number,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(Bytes),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
bufPtr := args[0].EncapsulatedValue().(*[]byte)
var offset, length int
var err error
err = gocty.FromCtyValue(args[1], &offset)
if err != nil {
return cty.NilVal, err
}
err = gocty.FromCtyValue(args[2], &length)
if err != nil {
return cty.NilVal, err
}
if offset < 0 || length < 0 {
return cty.NilVal, fmt.Errorf("offset and length must be non-negative")
}
if offset > len(*bufPtr) {
return cty.NilVal, fmt.Errorf(
"offset %d is greater than total buffer length %d",
offset, len(*bufPtr),
)
}
end := offset + length
if end > len(*bufPtr) {
return cty.NilVal, fmt.Errorf(
"offset %d + length %d is greater than total buffer length %d",
offset, length, len(*bufPtr),
)
}
return BytesVal((*bufPtr)[offset:end]), nil
},
})
func BytesLen(buf cty.Value) (cty.Value, error) {
return BytesLenFunc.Call([]cty.Value{buf})
}
func BytesSlice(buf cty.Value, offset cty.Value, length cty.Value) (cty.Value, error) {
return BytesSliceFunc.Call([]cty.Value{buf, offset, length})
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,122 @@
package stdlib
import (
"fmt"
"strconv"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/function"
)
// MakeToFunc constructs a "to..." function, like "tostring", which converts
// its argument to a specific type or type kind.
//
// The given type wantTy can be any type constraint that cty's "convert" package
// would accept. In particular, this means that you can pass
// cty.List(cty.DynamicPseudoType) to mean "list of any single type", which
// will then cause cty to attempt to unify all of the element types when given
// a tuple.
func MakeToFunc(wantTy cty.Type) function.Function {
return function.New(&function.Spec{
Description: fmt.Sprintf("Converts the given value to %s, or raises an error if that conversion is impossible.", wantTy.FriendlyName()),
Params: []function.Parameter{
{
Name: "v",
// We use DynamicPseudoType rather than wantTy here so that
// all values will pass through the function API verbatim and
// we can handle the conversion logic within the Type and
// Impl functions. This allows us to customize the error
// messages to be more appropriate for an explicit type
// conversion, whereas the cty function system produces
// messages aimed at _implicit_ type conversions.
Type: cty.DynamicPseudoType,
AllowNull: true,
},
},
Type: func(args []cty.Value) (cty.Type, error) {
gotTy := args[0].Type()
if gotTy.Equals(wantTy) {
return wantTy, nil
}
conv := convert.GetConversionUnsafe(args[0].Type(), wantTy)
if conv == nil {
// We'll use some specialized errors for some trickier cases,
// but most we can handle in a simple way.
switch {
case gotTy.IsTupleType() && wantTy.IsTupleType():
return cty.NilType, function.NewArgErrorf(0, "incompatible tuple type for conversion: %s", convert.MismatchMessage(gotTy, wantTy))
case gotTy.IsObjectType() && wantTy.IsObjectType():
return cty.NilType, function.NewArgErrorf(0, "incompatible object type for conversion: %s", convert.MismatchMessage(gotTy, wantTy))
default:
return cty.NilType, function.NewArgErrorf(0, "cannot convert %s to %s", gotTy.FriendlyName(), wantTy.FriendlyNameForConstraint())
}
}
// If a conversion is available then everything is fine.
return wantTy, nil
},
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
// We didn't set "AllowUnknown" on our argument, so it is guaranteed
// to be known here but may still be null.
ret, err := convert.Convert(args[0], retType)
if err != nil {
// Because we used GetConversionUnsafe above, conversion can
// still potentially fail in here. For example, if the user
// asks to convert the string "a" to bool then we'll
// optimistically permit it during type checking but fail here
// once we note that the value isn't either "true" or "false".
gotTy := args[0].Type()
switch {
case gotTy == cty.String && wantTy == cty.Bool:
what := "string"
if !args[0].IsNull() {
what = strconv.Quote(args[0].AsString())
}
return cty.NilVal, function.NewArgErrorf(0, `cannot convert %s to bool; only the strings "true" or "false" are allowed`, what)
case gotTy == cty.String && wantTy == cty.Number:
what := "string"
if !args[0].IsNull() {
what = strconv.Quote(args[0].AsString())
}
return cty.NilVal, function.NewArgErrorf(0, `cannot convert %s to number; given string must be a decimal representation of a number`, what)
default:
return cty.NilVal, function.NewArgErrorf(0, "cannot convert %s to %s", gotTy.FriendlyName(), wantTy.FriendlyNameForConstraint())
}
}
return ret, nil
},
})
}
// AssertNotNullFunc is a function which does nothing except return an error
// if the argument given to it is null.
//
// This could be useful in some cases where the automatic refinment of
// nullability isn't precise enough, because the result is guaranteed to not
// be null and can therefore allow downstream comparisons to null to return
// a known value even if the value is otherwise unknown.
var AssertNotNullFunc = function.New(&function.Spec{
Description: "Returns the given value varbatim if it is non-null, or raises an error if it's null.",
Params: []function.Parameter{
{
Name: "v",
Type: cty.DynamicPseudoType,
// NOTE: We intentionally don't set AllowNull here, and so
// the function system will automatically reject a null argument
// for us before calling Impl.
},
},
Type: func(args []cty.Value) (cty.Type, error) {
return args[0].Type(), nil
},
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
// Our argument doesn't set AllowNull: true, so we're guaranteed to
// have a non-null value in args[0].
return args[0], nil
},
})
func AssertNotNull(v cty.Value) (cty.Value, error) {
return AssertNotNullFunc.Call([]cty.Value{v})
}

View File

@@ -0,0 +1,104 @@
package stdlib
import (
"encoding/csv"
"fmt"
"io"
"strings"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
var CSVDecodeFunc = function.New(&function.Spec{
Description: `Parses the given string as Comma Separated Values (as defined by RFC 4180) and returns a map of objects representing the table of data, using the first row as a header row to define the object attributes.`,
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: func(args []cty.Value) (cty.Type, error) {
str := args[0]
if !str.IsKnown() {
return cty.DynamicPseudoType, nil
}
r := strings.NewReader(str.AsString())
cr := csv.NewReader(r)
headers, err := cr.Read()
if err == io.EOF {
return cty.DynamicPseudoType, fmt.Errorf("missing header line")
}
if err != nil {
return cty.DynamicPseudoType, csvError(err)
}
atys := make(map[string]cty.Type, len(headers))
for _, name := range headers {
if _, exists := atys[name]; exists {
return cty.DynamicPseudoType, fmt.Errorf("duplicate column name %q", name)
}
atys[name] = cty.String
}
return cty.List(cty.Object(atys)), nil
},
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
ety := retType.ElementType()
atys := ety.AttributeTypes()
str := args[0]
r := strings.NewReader(str.AsString())
cr := csv.NewReader(r)
cr.FieldsPerRecord = len(atys)
// Read the header row first, since that'll tell us which indices
// map to which attribute names.
headers, err := cr.Read()
if err != nil {
return cty.DynamicVal, err
}
var rows []cty.Value
for {
cols, err := cr.Read()
if err == io.EOF {
break
}
if err != nil {
return cty.DynamicVal, csvError(err)
}
vals := make(map[string]cty.Value, len(cols))
for i, str := range cols {
name := headers[i]
vals[name] = cty.StringVal(str)
}
rows = append(rows, cty.ObjectVal(vals))
}
if len(rows) == 0 {
return cty.ListValEmpty(ety), nil
}
return cty.ListVal(rows), nil
},
})
// CSVDecode parses the given CSV (RFC 4180) string and, if it is valid,
// returns a list of objects representing the rows.
//
// The result is always a list of some object type. The first row of the
// input is used to determine the object attributes, and subsequent rows
// determine the values of those attributes.
func CSVDecode(str cty.Value) (cty.Value, error) {
return CSVDecodeFunc.Call([]cty.Value{str})
}
func csvError(err error) error {
switch err := err.(type) {
case *csv.ParseError:
return fmt.Errorf("CSV parse error on line %d: %w", err.Line, err.Err)
default:
return err
}
}

View File

@@ -0,0 +1,445 @@
package stdlib
import (
"bufio"
"bytes"
"fmt"
"strings"
"time"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
var FormatDateFunc = function.New(&function.Spec{
Description: `Formats a timestamp given in RFC 3339 syntax into another timestamp in some other machine-oriented time syntax, as described in the format string.`,
Params: []function.Parameter{
{
Name: "format",
Type: cty.String,
},
{
Name: "time",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
formatStr := args[0].AsString()
timeStr := args[1].AsString()
t, err := parseTimestamp(timeStr)
if err != nil {
return cty.DynamicVal, function.NewArgError(1, err)
}
var buf bytes.Buffer
sc := bufio.NewScanner(strings.NewReader(formatStr))
sc.Split(splitDateFormat)
const esc = '\''
for sc.Scan() {
tok := sc.Bytes()
// The leading byte signals the token type
switch {
case tok[0] == esc:
if tok[len(tok)-1] != esc || len(tok) == 1 {
return cty.DynamicVal, function.NewArgErrorf(0, "unterminated literal '")
}
if len(tok) == 2 {
// Must be a single escaped quote, ''
buf.WriteByte(esc)
} else {
// The content (until a closing esc) is printed out verbatim
// except that we must un-double any double-esc escapes in
// the middle of the string.
raw := tok[1 : len(tok)-1]
for i := 0; i < len(raw); i++ {
buf.WriteByte(raw[i])
if raw[i] == esc {
i++ // skip the escaped quote
}
}
}
case startsDateFormatVerb(tok[0]):
switch tok[0] {
case 'Y':
y := t.Year()
switch len(tok) {
case 2:
fmt.Fprintf(&buf, "%02d", y%100)
case 4:
fmt.Fprintf(&buf, "%04d", y)
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: year must either be \"YY\" or \"YYYY\"", tok)
}
case 'M':
m := t.Month()
switch len(tok) {
case 1:
fmt.Fprintf(&buf, "%d", m)
case 2:
fmt.Fprintf(&buf, "%02d", m)
case 3:
buf.WriteString(m.String()[:3])
case 4:
buf.WriteString(m.String())
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: month must be \"M\", \"MM\", \"MMM\", or \"MMMM\"", tok)
}
case 'D':
d := t.Day()
switch len(tok) {
case 1:
fmt.Fprintf(&buf, "%d", d)
case 2:
fmt.Fprintf(&buf, "%02d", d)
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: day of month must either be \"D\" or \"DD\"", tok)
}
case 'E':
d := t.Weekday()
switch len(tok) {
case 3:
buf.WriteString(d.String()[:3])
case 4:
buf.WriteString(d.String())
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: day of week must either be \"EEE\" or \"EEEE\"", tok)
}
case 'h':
h := t.Hour()
switch len(tok) {
case 1:
fmt.Fprintf(&buf, "%d", h)
case 2:
fmt.Fprintf(&buf, "%02d", h)
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: 24-hour must either be \"h\" or \"hh\"", tok)
}
case 'H':
h := t.Hour() % 12
if h == 0 {
h = 12
}
switch len(tok) {
case 1:
fmt.Fprintf(&buf, "%d", h)
case 2:
fmt.Fprintf(&buf, "%02d", h)
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: 12-hour must either be \"H\" or \"HH\"", tok)
}
case 'A', 'a':
if len(tok) != 2 {
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: must be \"%s%s\"", tok, tok[0:1], tok[0:1])
}
upper := tok[0] == 'A'
switch t.Hour() / 12 {
case 0:
if upper {
buf.WriteString("AM")
} else {
buf.WriteString("am")
}
case 1:
if upper {
buf.WriteString("PM")
} else {
buf.WriteString("pm")
}
}
case 'm':
m := t.Minute()
switch len(tok) {
case 1:
fmt.Fprintf(&buf, "%d", m)
case 2:
fmt.Fprintf(&buf, "%02d", m)
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: minute must either be \"m\" or \"mm\"", tok)
}
case 's':
s := t.Second()
switch len(tok) {
case 1:
fmt.Fprintf(&buf, "%d", s)
case 2:
fmt.Fprintf(&buf, "%02d", s)
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: second must either be \"s\" or \"ss\"", tok)
}
case 'Z':
// We'll just lean on Go's own formatter for this one, since
// the necessary information is unexported.
switch len(tok) {
case 1:
buf.WriteString(t.Format("Z07:00"))
case 3:
str := t.Format("-0700")
switch str {
case "+0000":
buf.WriteString("UTC")
default:
buf.WriteString(str)
}
case 4:
buf.WriteString(t.Format("-0700"))
case 5:
buf.WriteString(t.Format("-07:00"))
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q: timezone must be Z, ZZZZ, or ZZZZZ", tok)
}
default:
return cty.DynamicVal, function.NewArgErrorf(0, "invalid date format verb %q", tok)
}
default:
// Any other starting character indicates a literal sequence
buf.Write(tok)
}
}
return cty.StringVal(buf.String()), nil
},
})
// TimeAddFunc is a function that adds a duration to a timestamp, returning a new timestamp.
var TimeAddFunc = function.New(&function.Spec{
Description: `Adds the duration represented by the given duration string to the given RFC 3339 timestamp string, returning another RFC 3339 timestamp.`,
Params: []function.Parameter{
{
Name: "timestamp",
Type: cty.String,
},
{
Name: "duration",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
ts, err := parseTimestamp(args[0].AsString())
if err != nil {
return cty.UnknownVal(cty.String), err
}
duration, err := time.ParseDuration(args[1].AsString())
if err != nil {
return cty.UnknownVal(cty.String), err
}
return cty.StringVal(ts.Add(duration).Format(time.RFC3339)), nil
},
})
// FormatDate reformats a timestamp given in RFC3339 syntax into another time
// syntax defined by a given format string.
//
// The format string uses letter mnemonics to represent portions of the
// timestamp, with repetition signifying length variants of each portion.
// Single quote characters ' can be used to quote sequences of literal letters
// that should not be interpreted as formatting mnemonics.
//
// The full set of supported mnemonic sequences is listed below:
//
// YY Year modulo 100 zero-padded to two digits, like "06".
// YYYY Four (or more) digit year, like "2006".
// M Month number, like "1" for January.
// MM Month number zero-padded to two digits, like "01".
// MMM English month name abbreviated to three letters, like "Jan".
// MMMM English month name unabbreviated, like "January".
// D Day of month number, like "2".
// DD Day of month number zero-padded to two digits, like "02".
// EEE English day of week name abbreviated to three letters, like "Mon".
// EEEE English day of week name unabbreviated, like "Monday".
// h 24-hour number, like "2".
// hh 24-hour number zero-padded to two digits, like "02".
// H 12-hour number, like "2".
// HH 12-hour number zero-padded to two digits, like "02".
// AA Hour AM/PM marker in uppercase, like "AM".
// aa Hour AM/PM marker in lowercase, like "am".
// m Minute within hour, like "5".
// mm Minute within hour zero-padded to two digits, like "05".
// s Second within minute, like "9".
// ss Second within minute zero-padded to two digits, like "09".
// ZZZZ Timezone offset with just sign and digit, like "-0800".
// ZZZZZ Timezone offset with colon separating hours and minutes, like "-08:00".
// Z Like ZZZZZ but with a special case "Z" for UTC.
// ZZZ Like ZZZZ but with a special case "UTC" for UTC.
//
// The format syntax is optimized mainly for generating machine-oriented
// timestamps rather than human-oriented timestamps; the English language
// portions of the output reflect the use of English names in a number of
// machine-readable date formatting standards. For presentation to humans,
// a locale-aware time formatter (not included in this package) is a better
// choice.
//
// The format syntax is not compatible with that of any other language, but
// is optimized so that patterns for common standard date formats can be
// recognized quickly even by a reader unfamiliar with the format syntax.
func FormatDate(format cty.Value, timestamp cty.Value) (cty.Value, error) {
return FormatDateFunc.Call([]cty.Value{format, timestamp})
}
// splitDataFormat is a bufio.SplitFunc used to tokenize a date format.
func splitDateFormat(data []byte, atEOF bool) (advance int, token []byte, err error) {
if len(data) == 0 {
return 0, nil, nil
}
const esc = '\''
switch {
case data[0] == esc:
// If we have another quote immediately after then this is a single
// escaped escape.
if len(data) > 1 && data[1] == esc {
return 2, data[:2], nil
}
// Beginning of quoted sequence, so we will seek forward until we find
// the closing quote, ignoring escaped quotes along the way.
for i := 1; i < len(data); i++ {
if data[i] == esc {
if (i + 1) == len(data) {
if atEOF {
// We have a closing quote and are at the end of our input
return len(data), data, nil
} else {
// We need at least one more byte to decide if this is an
// escape or a terminator.
return 0, nil, nil
}
}
if data[i+1] == esc {
i++ // doubled-up quotes are an escape sequence
continue
}
// We've found the closing quote
return i + 1, data[:i+1], nil
}
}
// If we fall out here then we need more bytes to find the end,
// unless we're already at the end with an unclosed quote.
if atEOF {
return len(data), data, nil
}
return 0, nil, nil
case startsDateFormatVerb(data[0]):
rep := data[0]
for i := 1; i < len(data); i++ {
if data[i] != rep {
return i, data[:i], nil
}
}
if atEOF {
return len(data), data, nil
}
// We need more data to decide if we've found the end
return 0, nil, nil
default:
for i := 1; i < len(data); i++ {
if data[i] == esc || startsDateFormatVerb(data[i]) {
return i, data[:i], nil
}
}
// We might not actually be at the end of a literal sequence,
// but that doesn't matter since we'll concat them back together
// anyway.
return len(data), data, nil
}
}
func startsDateFormatVerb(b byte) bool {
return (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z')
}
func parseTimestamp(ts string) (time.Time, error) {
t, err := parseStrictRFC3339(ts)
if err != nil {
switch err := err.(type) {
case *time.ParseError:
// If err is s time.ParseError then its string representation is not
// appropriate since it relies on details of Go's strange date format
// representation, which a caller of our functions is not expected
// to be familiar with.
//
// Therefore we do some light transformation to get a more suitable
// error that should make more sense to our callers. These are
// still not awesome error messages, but at least they refer to
// the timestamp portions by name rather than by Go's example
// values.
if err.LayoutElem == "" && err.ValueElem == "" && err.Message != "" {
// For some reason err.Message is populated with a ": " prefix
// by the time package.
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp%s", err.Message)
}
var what string
switch err.LayoutElem {
case "2006":
what = "year"
case "01":
what = "month"
case "02":
what = "day of month"
case "15":
what = "hour"
case "04":
what = "minute"
case "05":
what = "second"
case "Z07:00":
what = "UTC offset"
case "T":
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp: missing required time introducer 'T'")
case ":", "-":
if err.ValueElem == "" {
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp: end of string where %q is expected", err.LayoutElem)
} else {
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp: found %q where %q is expected", err.ValueElem, err.LayoutElem)
}
default:
// Should never get here, because RFC3339 includes only the
// above portions.
what = "timestamp segment"
}
if err.ValueElem == "" {
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp: end of string before %s", what)
} else {
switch {
case what == "hour" && strings.Contains(err.ValueElem, ":"):
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp: hour must be between 0 and 23 inclusive")
case what == "hour" && len(err.ValueElem) != 2:
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp: hour must have exactly two digits")
case what == "minute" && len(err.ValueElem) != 2:
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp: minute must have exactly two digits")
default:
return time.Time{}, fmt.Errorf("not a valid RFC3339 timestamp: cannot use %q as %s", err.ValueElem, what)
}
}
}
return time.Time{}, err
}
return t, nil
}
// TimeAdd adds a duration to a timestamp, returning a new timestamp.
//
// In the HCL language, timestamps are conventionally represented as
// strings using RFC 3339 "Date and Time format" syntax. Timeadd requires
// the timestamp argument to be a string conforming to this syntax.
//
// `duration` is a string representation of a time difference, consisting of
// sequences of number and unit pairs, like `"1.5h"` or `1h30m`. The accepted
// units are `ns`, `us` (or `µs`), `"ms"`, `"s"`, `"m"`, and `"h"`. The first
// number may be negative to indicate a negative duration, like `"-2h5m"`.
//
// The result is a string, also in RFC 3339 format, representing the result
// of adding the given direction to the given timestamp.
func TimeAdd(timestamp cty.Value, duration cty.Value) (cty.Value, error) {
return TimeAddFunc.Call([]cty.Value{timestamp, duration})
}

View File

@@ -0,0 +1,219 @@
package stdlib
import (
"errors"
"strconv"
"time"
)
// This file inlines some RFC3339 parsing code that was added to the Go standard
// library's "time" package during the Go 1.20 development period but then
// reverted prior to release to follow the Go proposals process first.
//
// Our goal is to support only valid RFC3339 strings regardless of what version
// of Go is being used, because the Go stdlib is just an implementation detail
// of the cty stdlib and so these functions should not very their behavior
// significantly due to being compiled against a different Go version.
//
// These inline copies of the code from upstream should likely stay here
// indefinitely even if functionality like this _is_ accepted in a later version
// of Go, because this now defines cty's definition of RFC3339 parsing as
// intentionally independent of Go's.
func parseStrictRFC3339(str string) (time.Time, error) {
t, ok := parseRFC3339(str)
if !ok {
// If parsing failed then we'll try to use time.Parse to gather up a
// helpful error object.
_, err := time.Parse(time.RFC3339, str)
if err != nil {
return time.Time{}, err
}
// The parse template syntax cannot correctly validate RFC 3339.
// Explicitly check for cases that Parse is unable to validate for.
// See https://go.dev/issue/54580.
num2 := func(str string) byte { return 10*(str[0]-'0') + (str[1] - '0') }
switch {
case str[len("2006-01-02T")+1] == ':': // hour must be two digits
return time.Time{}, &time.ParseError{
Layout: time.RFC3339,
Value: str,
LayoutElem: "15",
ValueElem: str[len("2006-01-02T"):][:1],
Message: ": hour must have two digits",
}
case str[len("2006-01-02T15:04:05")] == ',': // sub-second separator must be a period
return time.Time{}, &time.ParseError{
Layout: time.RFC3339,
Value: str,
LayoutElem: ".",
ValueElem: ",",
Message: ": sub-second separator must be a period",
}
case str[len(str)-1] != 'Z':
switch {
case num2(str[len(str)-len("07:00"):]) >= 24: // timezone hour must be in range
return time.Time{}, &time.ParseError{
Layout: time.RFC3339,
Value: str,
LayoutElem: "Z07:00",
ValueElem: str[len(str)-len("Z07:00"):],
Message: ": timezone hour out of range",
}
case num2(str[len(str)-len("00"):]) >= 60: // timezone minute must be in range
return time.Time{}, &time.ParseError{
Layout: time.RFC3339,
Value: str,
LayoutElem: "Z07:00",
ValueElem: str[len(str)-len("Z07:00"):],
Message: ": timezone minute out of range",
}
}
default: // unknown error; should not occur
return time.Time{}, &time.ParseError{
Layout: time.RFC3339,
Value: str,
LayoutElem: time.RFC3339,
ValueElem: str,
Message: "",
}
}
}
return t, nil
}
func parseRFC3339(s string) (time.Time, bool) {
// parseUint parses s as an unsigned decimal integer and
// verifies that it is within some range.
// If it is invalid or out-of-range,
// it sets ok to false and returns the min value.
ok := true
parseUint := func(s string, min, max int) (x int) {
for _, c := range []byte(s) {
if c < '0' || '9' < c {
ok = false
return min
}
x = x*10 + int(c) - '0'
}
if x < min || max < x {
ok = false
return min
}
return x
}
// Parse the date and time.
if len(s) < len("2006-01-02T15:04:05") {
return time.Time{}, false
}
year := parseUint(s[0:4], 0, 9999) // e.g., 2006
month := parseUint(s[5:7], 1, 12) // e.g., 01
day := parseUint(s[8:10], 1, daysIn(time.Month(month), year)) // e.g., 02
hour := parseUint(s[11:13], 0, 23) // e.g., 15
min := parseUint(s[14:16], 0, 59) // e.g., 04
sec := parseUint(s[17:19], 0, 59) // e.g., 05
if !ok || !(s[4] == '-' && s[7] == '-' && s[10] == 'T' && s[13] == ':' && s[16] == ':') {
return time.Time{}, false
}
s = s[19:]
// Parse the fractional second.
var nsec int
if len(s) >= 2 && s[0] == '.' && isDigit(s, 1) {
n := 2
for ; n < len(s) && isDigit(s, n); n++ {
}
nsec, _, _ = parseNanoseconds(s, n)
s = s[n:]
}
// Parse the time zone.
loc := time.UTC
if len(s) != 1 || s[0] != 'Z' {
if len(s) != len("-07:00") {
return time.Time{}, false
}
hr := parseUint(s[1:3], 0, 23) // e.g., 07
mm := parseUint(s[4:6], 0, 59) // e.g., 00
if !ok || !((s[0] == '-' || s[0] == '+') && s[3] == ':') {
return time.Time{}, false
}
zoneOffsetSecs := (hr*60 + mm) * 60
if s[0] == '-' {
zoneOffsetSecs = -zoneOffsetSecs
}
loc = time.FixedZone("", zoneOffsetSecs)
}
t := time.Date(year, time.Month(month), day, hour, min, sec, nsec, loc)
return t, true
}
func isDigit(s string, i int) bool {
if len(s) <= i {
return false
}
c := s[i]
return '0' <= c && c <= '9'
}
func parseNanoseconds(value string, nbytes int) (ns int, rangeErrString string, err error) {
if value[0] != '.' && value[0] != ',' {
err = errBadTimestamp
return
}
if nbytes > 10 {
value = value[:10]
nbytes = 10
}
if ns, err = strconv.Atoi(value[1:nbytes]); err != nil {
return
}
if ns < 0 {
rangeErrString = "fractional second"
return
}
// We need nanoseconds, which means scaling by the number
// of missing digits in the format, maximum length 10.
scaleDigits := 10 - nbytes
for i := 0; i < scaleDigits; i++ {
ns *= 10
}
return
}
// These are internal errors used by the date parsing code and are not ever
// returned by public functions.
var errBadTimestamp = errors.New("bad value for field")
// daysBefore[m] counts the number of days in a non-leap year
// before month m begins. There is an entry for m=12, counting
// the number of days before January of next year (365).
var daysBefore = [...]int32{
0,
31,
31 + 28,
31 + 28 + 31,
31 + 28 + 31 + 30,
31 + 28 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
}
func daysIn(m time.Month, year int) int {
if m == time.February && isLeap(year) {
return 29
}
return int(daysBefore[m] - daysBefore[m-1])
}
func isLeap(year int) bool {
return year%4 == 0 && (year%100 != 0 || year%400 == 0)
}

View File

@@ -0,0 +1,13 @@
// Package stdlib is a collection of cty functions that are expected to be
// generally useful, and are thus factored out into this shared library in
// the hope that cty-using applications will have consistent behavior when
// using these functions.
//
// See the parent package "function" for more information on the purpose
// and usage of cty functions.
//
// This package contains both Go functions, which provide convenient access
// to call the functions from Go code, and the Function objects themselves.
// The latter follow the naming scheme of appending "Func" to the end of
// the function name.
package stdlib

View File

@@ -0,0 +1,532 @@
package stdlib
import (
"bytes"
"fmt"
"math/big"
"strings"
"github.com/apparentlymart/go-textseg/v13/textseg"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/json"
)
//go:generate ragel -Z format_fsm.rl
//go:generate gofmt -w format_fsm.go
var FormatFunc = function.New(&function.Spec{
Description: `Constructs a string by applying formatting verbs to a series of arguments, using a similar syntax to the C function \"printf\".`,
Params: []function.Parameter{
{
Name: "format",
Type: cty.String,
},
},
VarParam: &function.Parameter{
Name: "args",
Type: cty.DynamicPseudoType,
AllowNull: true,
AllowUnknown: true,
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
for _, arg := range args[1:] {
if !arg.IsWhollyKnown() {
// We require all nested values to be known because the only
// thing we can do for a collection/structural type is print
// it as JSON and that requires it to be wholly known.
// However, we might be able to refine the result with a
// known prefix, if there are literal characters before the
// first formatting verb.
f := args[0].AsString()
if idx := strings.IndexByte(f, '%'); idx > 0 {
prefix := f[:idx]
return cty.UnknownVal(cty.String).Refine().StringPrefix(prefix).NewValue(), nil
}
return cty.UnknownVal(cty.String), nil
}
}
str, err := formatFSM(args[0].AsString(), args[1:])
return cty.StringVal(str), err
},
})
var FormatListFunc = function.New(&function.Spec{
Description: `Constructs a list of strings by applying formatting verbs to a series of arguments, using a similar syntax to the C function \"printf\".`,
Params: []function.Parameter{
{
Name: "format",
Type: cty.String,
},
},
VarParam: &function.Parameter{
Name: "args",
Type: cty.DynamicPseudoType,
AllowNull: true,
AllowUnknown: true,
},
Type: function.StaticReturnType(cty.List(cty.String)),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
fmtVal := args[0]
args = args[1:]
if len(args) == 0 {
// With no arguments, this function is equivalent to Format, but
// returning a single-element list result.
result, err := Format(fmtVal, args...)
return cty.ListVal([]cty.Value{result}), err
}
fmtStr := fmtVal.AsString()
// Each of our arguments will be dealt with either as an iterator
// or as a single value. Iterators are used for sequence-type values
// (lists, sets, tuples) while everything else is treated as a
// single value. The sequences we iterate over are required to be
// all the same length.
iterLen := -1
lenChooser := -1
iterators := make([]cty.ElementIterator, len(args))
singleVals := make([]cty.Value, len(args))
unknowns := make([]bool, len(args))
for i, arg := range args {
argTy := arg.Type()
switch {
case (argTy.IsListType() || argTy.IsSetType() || argTy.IsTupleType()) && !arg.IsNull():
if !argTy.IsTupleType() && !(arg.IsKnown() && arg.Length().IsKnown()) {
// We can't iterate this one at all yet then, so we can't
// yet produce a result.
unknowns[i] = true
continue
}
thisLen := arg.LengthInt()
if iterLen == -1 {
iterLen = thisLen
lenChooser = i
} else {
if thisLen != iterLen {
return cty.NullVal(cty.List(cty.String)), function.NewArgErrorf(
i+1,
"argument %d has length %d, which is inconsistent with argument %d of length %d",
i+1, thisLen,
lenChooser+1, iterLen,
)
}
}
if !arg.IsKnown() {
// We allowed an unknown tuple value to fall through in
// our initial check above so that we'd be able to run
// the above error checks against it, but we still can't
// iterate it if the checks pass.
unknowns[i] = true
continue
}
iterators[i] = arg.ElementIterator()
case arg == cty.DynamicVal:
unknowns[i] = true
default:
singleVals[i] = arg
}
}
for _, isUnk := range unknowns {
if isUnk {
return cty.UnknownVal(retType), nil
}
}
if iterLen == 0 {
// If our sequences are all empty then our result must be empty.
return cty.ListValEmpty(cty.String), nil
}
if iterLen == -1 {
// If we didn't encounter any iterables at all then we're going
// to just do one iteration with items from singleVals.
iterLen = 1
}
ret := make([]cty.Value, 0, iterLen)
fmtArgs := make([]cty.Value, len(iterators))
Results:
for iterIdx := 0; iterIdx < iterLen; iterIdx++ {
// Construct our arguments for a single format call
for i := range fmtArgs {
switch {
case iterators[i] != nil:
iterator := iterators[i]
iterator.Next()
_, val := iterator.Element()
fmtArgs[i] = val
default:
fmtArgs[i] = singleVals[i]
}
// If any of the arguments to this call would be unknown then
// this particular result is unknown, but we'll keep going
// to see if any other iterations can produce known values.
if !fmtArgs[i].IsWhollyKnown() {
// We require all nested values to be known because the only
// thing we can do for a collection/structural type is print
// it as JSON and that requires it to be wholly known.
ret = append(ret, cty.UnknownVal(cty.String).RefineNotNull())
continue Results
}
}
str, err := formatFSM(fmtStr, fmtArgs)
if err != nil {
return cty.NullVal(cty.List(cty.String)), fmt.Errorf(
"error on format iteration %d: %s", iterIdx, err,
)
}
ret = append(ret, cty.StringVal(str))
}
return cty.ListVal(ret), nil
},
})
// Format produces a string representation of zero or more values using a
// format string similar to the "printf" function in C.
//
// It supports the following "verbs":
//
// %% Literal percent sign, consuming no value
// %v A default formatting of the value based on type, as described below.
// %#v JSON serialization of the value
// %t Converts to boolean and then produces "true" or "false"
// %b Converts to number, requires integer, produces binary representation
// %d Converts to number, requires integer, produces decimal representation
// %o Converts to number, requires integer, produces octal representation
// %x Converts to number, requires integer, produces hexadecimal representation
// with lowercase letters
// %X Like %x but with uppercase letters
// %e Converts to number, produces scientific notation like -1.234456e+78
// %E Like %e but with an uppercase "E" representing the exponent
// %f Converts to number, produces decimal representation with fractional
// part but no exponent, like 123.456
// %g %e for large exponents or %f otherwise
// %G %E for large exponents or %f otherwise
// %s Converts to string and produces the string's characters
// %q Converts to string and produces JSON-quoted string representation,
// like %v.
//
// The default format selections made by %v are:
//
// string %s
// number %g
// bool %t
// other %#v
//
// Null values produce the literal keyword "null" for %v and %#v, and produce
// an error otherwise.
//
// Width is specified by an optional decimal number immediately preceding the
// verb letter. If absent, the width is whatever is necessary to represent the
// value. Precision is specified after the (optional) width by a period
// followed by a decimal number. If no period is present, a default precision
// is used. A period with no following number is invalid.
// For examples:
//
// %f default width, default precision
// %9f width 9, default precision
// %.2f default width, precision 2
// %9.2f width 9, precision 2
//
// Width and precision are measured in unicode characters (grapheme clusters).
//
// For most values, width is the minimum number of characters to output,
// padding the formatted form with spaces if necessary.
//
// For strings, precision limits the length of the input to be formatted (not
// the size of the output), truncating if necessary.
//
// For numbers, width sets the minimum width of the field and precision sets
// the number of places after the decimal, if appropriate, except that for
// %g/%G precision sets the total number of significant digits.
//
// The following additional symbols can be used immediately after the percent
// introducer as flags:
//
// (a space) leave a space where the sign would be if number is positive
// + Include a sign for a number even if it is positive (numeric only)
// - Pad with spaces on the left rather than the right
// 0 Pad with zeros rather than spaces.
//
// Flag characters are ignored for verbs that do not support them.
//
// By default, % sequences consume successive arguments starting with the first.
// Introducing a [n] sequence immediately before the verb letter, where n is a
// decimal integer, explicitly chooses a particular value argument by its
// one-based index. Subsequent calls without an explicit index will then
// proceed with n+1, n+2, etc.
//
// An error is produced if the format string calls for an impossible conversion
// or accesses more values than are given. An error is produced also for
// an unsupported format verb.
func Format(format cty.Value, vals ...cty.Value) (cty.Value, error) {
args := make([]cty.Value, 0, len(vals)+1)
args = append(args, format)
args = append(args, vals...)
return FormatFunc.Call(args)
}
// FormatList applies the same formatting behavior as Format, but accepts
// a mixture of list and non-list values as arguments. Any list arguments
// passed must have the same length, which dictates the length of the
// resulting list.
//
// Any non-list arguments are used repeatedly for each iteration over the
// list arguments. The list arguments are iterated in order by key, so
// corresponding items are formatted together.
func FormatList(format cty.Value, vals ...cty.Value) (cty.Value, error) {
args := make([]cty.Value, 0, len(vals)+1)
args = append(args, format)
args = append(args, vals...)
return FormatListFunc.Call(args)
}
type formatVerb struct {
Raw string
Offset int
ArgNum int
Mode rune
Zero bool
Sharp bool
Plus bool
Minus bool
Space bool
HasPrec bool
Prec int
HasWidth bool
Width int
}
// formatAppend is called by formatFSM (generated by format_fsm.rl) for each
// formatting sequence that is encountered.
func formatAppend(verb *formatVerb, buf *bytes.Buffer, args []cty.Value) error {
argIdx := verb.ArgNum - 1
if argIdx >= len(args) {
return fmt.Errorf(
"not enough arguments for %q at %d: need index %d but have %d total",
verb.Raw, verb.Offset,
verb.ArgNum, len(args),
)
}
arg := args[argIdx]
if verb.Mode != 'v' && arg.IsNull() {
return fmt.Errorf("unsupported value for %q at %d: null value cannot be formatted", verb.Raw, verb.Offset)
}
// Normalize to make some things easier for downstream formatters
if !verb.HasWidth {
verb.Width = -1
}
if !verb.HasPrec {
verb.Prec = -1
}
// For our first pass we'll ensure the verb is supported and then fan
// out to other functions based on what conversion is needed.
switch verb.Mode {
case 'v':
return formatAppendAsIs(verb, buf, arg)
case 't':
return formatAppendBool(verb, buf, arg)
case 'b', 'd', 'o', 'x', 'X', 'e', 'E', 'f', 'g', 'G':
return formatAppendNumber(verb, buf, arg)
case 's', 'q':
return formatAppendString(verb, buf, arg)
default:
return fmt.Errorf("unsupported format verb %q in %q at offset %d", verb.Mode, verb.Raw, verb.Offset)
}
}
func formatAppendAsIs(verb *formatVerb, buf *bytes.Buffer, arg cty.Value) error {
if !verb.Sharp && !arg.IsNull() {
// Unless the caller overrode it with the sharp flag, we'll try some
// specialized formats before we fall back on JSON.
switch arg.Type() {
case cty.String:
fmted := arg.AsString()
fmted = formatPadWidth(verb, fmted)
buf.WriteString(fmted)
return nil
case cty.Number:
bf := arg.AsBigFloat()
fmted := bf.Text('g', -1)
fmted = formatPadWidth(verb, fmted)
buf.WriteString(fmted)
return nil
}
}
jb, err := json.Marshal(arg, arg.Type())
if err != nil {
return fmt.Errorf("unsupported value for %q at %d: %s", verb.Raw, verb.Offset, err)
}
fmted := formatPadWidth(verb, string(jb))
buf.WriteString(fmted)
return nil
}
func formatAppendBool(verb *formatVerb, buf *bytes.Buffer, arg cty.Value) error {
var err error
arg, err = convert.Convert(arg, cty.Bool)
if err != nil {
return fmt.Errorf("unsupported value for %q at %d: %s", verb.Raw, verb.Offset, err)
}
if arg.True() {
buf.WriteString("true")
} else {
buf.WriteString("false")
}
return nil
}
func formatAppendNumber(verb *formatVerb, buf *bytes.Buffer, arg cty.Value) error {
var err error
arg, err = convert.Convert(arg, cty.Number)
if err != nil {
return fmt.Errorf("unsupported value for %q at %d: %s", verb.Raw, verb.Offset, err)
}
switch verb.Mode {
case 'b', 'd', 'o', 'x', 'X':
return formatAppendInteger(verb, buf, arg)
default:
bf := arg.AsBigFloat()
// For floats our format syntax is a subset of Go's, so it's
// safe for us to just lean on the existing Go implementation.
fmtstr := formatStripIndexSegment(verb.Raw)
fmted := fmt.Sprintf(fmtstr, bf)
buf.WriteString(fmted)
return nil
}
}
func formatAppendInteger(verb *formatVerb, buf *bytes.Buffer, arg cty.Value) error {
bf := arg.AsBigFloat()
bi, acc := bf.Int(nil)
if acc != big.Exact {
return fmt.Errorf("unsupported value for %q at %d: an integer is required", verb.Raw, verb.Offset)
}
// For integers our format syntax is a subset of Go's, so it's
// safe for us to just lean on the existing Go implementation.
fmtstr := formatStripIndexSegment(verb.Raw)
fmted := fmt.Sprintf(fmtstr, bi)
buf.WriteString(fmted)
return nil
}
func formatAppendString(verb *formatVerb, buf *bytes.Buffer, arg cty.Value) error {
var err error
arg, err = convert.Convert(arg, cty.String)
if err != nil {
return fmt.Errorf("unsupported value for %q at %d: %s", verb.Raw, verb.Offset, err)
}
// We _cannot_ directly use the Go fmt.Sprintf implementation for strings
// because it measures widths and precisions in runes rather than grapheme
// clusters.
str := arg.AsString()
if verb.Prec > 0 {
strB := []byte(str)
pos := 0
wanted := verb.Prec
for i := 0; i < wanted; i++ {
next := strB[pos:]
if len(next) == 0 {
// ran out of characters before we hit our max width
break
}
d, _, _ := textseg.ScanGraphemeClusters(strB[pos:], true)
pos += d
}
str = str[:pos]
}
switch verb.Mode {
case 's':
fmted := formatPadWidth(verb, str)
buf.WriteString(fmted)
case 'q':
jb, err := json.Marshal(cty.StringVal(str), cty.String)
if err != nil {
// Should never happen, since we know this is a known, non-null string
panic(fmt.Errorf("failed to marshal %#v as JSON: %s", arg, err))
}
fmted := formatPadWidth(verb, string(jb))
buf.WriteString(fmted)
default:
// Should never happen because formatAppend should've already validated
panic(fmt.Errorf("invalid string formatting mode %q", verb.Mode))
}
return nil
}
func formatPadWidth(verb *formatVerb, fmted string) string {
if verb.Width < 0 {
return fmted
}
// Safe to ignore errors because ScanGraphemeClusters cannot produce errors
givenLen, _ := textseg.TokenCount([]byte(fmted), textseg.ScanGraphemeClusters)
wantLen := verb.Width
if givenLen >= wantLen {
return fmted
}
padLen := wantLen - givenLen
padChar := " "
if verb.Zero {
padChar = "0"
}
pads := strings.Repeat(padChar, padLen)
if verb.Minus {
return fmted + pads
}
return pads + fmted
}
// formatStripIndexSegment strips out any [nnn] segment present in a verb
// string so that we can pass it through to Go's fmt.Sprintf with a single
// argument. This is used in cases where we're just leaning on Go's formatter
// because it's a superset of ours.
func formatStripIndexSegment(rawVerb string) string {
// We assume the string has already been validated here, since we should
// only be using this function with strings that were accepted by our
// scanner in formatFSM.
start := strings.Index(rawVerb, "[")
end := strings.Index(rawVerb, "]")
if start == -1 || end == -1 {
return rawVerb
}
return rawVerb[:start] + rawVerb[end+1:]
}

View File

@@ -0,0 +1,374 @@
// line 1 "format_fsm.rl"
// This file is generated from format_fsm.rl. DO NOT EDIT.
// line 5 "format_fsm.rl"
package stdlib
import (
"bytes"
"fmt"
"unicode/utf8"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
// line 21 "format_fsm.go"
var _formatfsm_actions []byte = []byte{
0, 1, 0, 1, 1, 1, 2, 1, 4,
1, 5, 1, 6, 1, 7, 1, 8,
1, 9, 1, 10, 1, 11, 1, 14,
1, 16, 1, 17, 1, 18, 2, 3,
4, 2, 12, 10, 2, 12, 16, 2,
12, 18, 2, 13, 14, 2, 15, 10,
2, 15, 18,
}
var _formatfsm_key_offsets []byte = []byte{
0, 0, 14, 27, 34, 36, 39, 43,
51,
}
var _formatfsm_trans_keys []byte = []byte{
32, 35, 37, 43, 45, 46, 48, 91,
49, 57, 65, 90, 97, 122, 32, 35,
43, 45, 46, 48, 91, 49, 57, 65,
90, 97, 122, 91, 48, 57, 65, 90,
97, 122, 49, 57, 93, 48, 57, 65,
90, 97, 122, 46, 91, 48, 57, 65,
90, 97, 122, 37,
}
var _formatfsm_single_lengths []byte = []byte{
0, 8, 7, 1, 0, 1, 0, 2,
1,
}
var _formatfsm_range_lengths []byte = []byte{
0, 3, 3, 3, 1, 1, 2, 3,
0,
}
var _formatfsm_index_offsets []byte = []byte{
0, 0, 12, 23, 28, 30, 33, 36,
42,
}
var _formatfsm_indicies []byte = []byte{
1, 2, 3, 4, 5, 6, 7, 10,
8, 9, 9, 0, 1, 2, 4, 5,
6, 7, 10, 8, 9, 9, 0, 13,
11, 12, 12, 0, 14, 0, 15, 14,
0, 9, 9, 0, 16, 19, 17, 18,
18, 0, 20, 3,
}
var _formatfsm_trans_targs []byte = []byte{
0, 2, 2, 8, 2, 2, 3, 2,
7, 8, 4, 3, 8, 4, 5, 6,
3, 7, 8, 4, 1,
}
var _formatfsm_trans_actions []byte = []byte{
7, 17, 9, 3, 15, 13, 25, 11,
43, 29, 19, 27, 49, 46, 21, 0,
37, 23, 40, 34, 1,
}
var _formatfsm_eof_actions []byte = []byte{
0, 31, 31, 31, 31, 31, 31, 31,
5,
}
const formatfsm_start int = 8
const formatfsm_first_final int = 8
const formatfsm_error int = 0
const formatfsm_en_main int = 8
// line 20 "format_fsm.rl"
func formatFSM(format string, a []cty.Value) (string, error) {
var buf bytes.Buffer
data := format
nextArg := 1 // arg numbers are 1-based
var verb formatVerb
highestArgIdx := 0 // zero means "none", since arg numbers are 1-based
// line 159 "format_fsm.rl"
// Ragel state
p := 0 // "Pointer" into data
pe := len(data) // End-of-data "pointer"
cs := 0 // current state (will be initialized by ragel-generated code)
ts := 0
te := 0
eof := pe
// Keep Go compiler happy even if generated code doesn't use these
_ = ts
_ = te
_ = eof
// line 123 "format_fsm.go"
{
cs = formatfsm_start
}
// line 128 "format_fsm.go"
{
var _klen int
var _trans int
var _acts int
var _nacts uint
var _keys int
if p == pe {
goto _test_eof
}
if cs == 0 {
goto _out
}
_resume:
_keys = int(_formatfsm_key_offsets[cs])
_trans = int(_formatfsm_index_offsets[cs])
_klen = int(_formatfsm_single_lengths[cs])
if _klen > 0 {
_lower := int(_keys)
var _mid int
_upper := int(_keys + _klen - 1)
for {
if _upper < _lower {
break
}
_mid = _lower + ((_upper - _lower) >> 1)
switch {
case data[p] < _formatfsm_trans_keys[_mid]:
_upper = _mid - 1
case data[p] > _formatfsm_trans_keys[_mid]:
_lower = _mid + 1
default:
_trans += int(_mid - int(_keys))
goto _match
}
}
_keys += _klen
_trans += _klen
}
_klen = int(_formatfsm_range_lengths[cs])
if _klen > 0 {
_lower := int(_keys)
var _mid int
_upper := int(_keys + (_klen << 1) - 2)
for {
if _upper < _lower {
break
}
_mid = _lower + (((_upper - _lower) >> 1) & ^1)
switch {
case data[p] < _formatfsm_trans_keys[_mid]:
_upper = _mid - 2
case data[p] > _formatfsm_trans_keys[_mid+1]:
_lower = _mid + 2
default:
_trans += int((_mid - int(_keys)) >> 1)
goto _match
}
}
_trans += _klen
}
_match:
_trans = int(_formatfsm_indicies[_trans])
cs = int(_formatfsm_trans_targs[_trans])
if _formatfsm_trans_actions[_trans] == 0 {
goto _again
}
_acts = int(_formatfsm_trans_actions[_trans])
_nacts = uint(_formatfsm_actions[_acts])
_acts++
for ; _nacts > 0; _nacts-- {
_acts++
switch _formatfsm_actions[_acts-1] {
case 0:
// line 31 "format_fsm.rl"
verb = formatVerb{
ArgNum: nextArg,
Prec: -1,
Width: -1,
}
ts = p
case 1:
// line 40 "format_fsm.rl"
buf.WriteByte(data[p])
case 4:
// line 51 "format_fsm.rl"
// We'll try to slurp a whole UTF-8 sequence here, to give the user
// better feedback.
r, _ := utf8.DecodeRuneInString(data[p:])
return buf.String(), fmt.Errorf("unrecognized format character %q at offset %d", r, p)
case 5:
// line 58 "format_fsm.rl"
verb.Sharp = true
case 6:
// line 61 "format_fsm.rl"
verb.Zero = true
case 7:
// line 64 "format_fsm.rl"
verb.Minus = true
case 8:
// line 67 "format_fsm.rl"
verb.Plus = true
case 9:
// line 70 "format_fsm.rl"
verb.Space = true
case 10:
// line 74 "format_fsm.rl"
verb.ArgNum = 0
case 11:
// line 77 "format_fsm.rl"
verb.ArgNum = (10 * verb.ArgNum) + (int(data[p]) - '0')
case 12:
// line 81 "format_fsm.rl"
verb.HasWidth = true
case 13:
// line 84 "format_fsm.rl"
verb.Width = 0
case 14:
// line 87 "format_fsm.rl"
verb.Width = (10 * verb.Width) + (int(data[p]) - '0')
case 15:
// line 91 "format_fsm.rl"
verb.HasPrec = true
case 16:
// line 94 "format_fsm.rl"
verb.Prec = 0
case 17:
// line 97 "format_fsm.rl"
verb.Prec = (10 * verb.Prec) + (int(data[p]) - '0')
case 18:
// line 101 "format_fsm.rl"
verb.Mode = rune(data[p])
te = p + 1
verb.Raw = data[ts:te]
verb.Offset = ts
if verb.ArgNum > highestArgIdx {
highestArgIdx = verb.ArgNum
}
err := formatAppend(&verb, &buf, a)
if err != nil {
return buf.String(), err
}
nextArg = verb.ArgNum + 1
// line 330 "format_fsm.go"
}
}
_again:
if cs == 0 {
goto _out
}
p++
if p != pe {
goto _resume
}
_test_eof:
{
}
if p == eof {
__acts := _formatfsm_eof_actions[cs]
__nacts := uint(_formatfsm_actions[__acts])
__acts++
for ; __nacts > 0; __nacts-- {
__acts++
switch _formatfsm_actions[__acts-1] {
case 2:
// line 44 "format_fsm.rl"
case 3:
// line 47 "format_fsm.rl"
return buf.String(), fmt.Errorf("invalid format string starting at offset %d", p)
case 4:
// line 51 "format_fsm.rl"
// We'll try to slurp a whole UTF-8 sequence here, to give the user
// better feedback.
r, _ := utf8.DecodeRuneInString(data[p:])
return buf.String(), fmt.Errorf("unrecognized format character %q at offset %d", r, p)
// line 369 "format_fsm.go"
}
}
}
_out:
{
}
}
// line 177 "format_fsm.rl"
// If we fall out here without being in a final state then we've
// encountered something that the scanner can't match, which should
// be impossible (the scanner matches all bytes _somehow_) but we'll
// flag it anyway rather than just losing data from the end.
if cs < formatfsm_first_final {
return buf.String(), fmt.Errorf("extraneous characters beginning at offset %d", p)
}
if highestArgIdx < len(a) {
// Extraneous args are an error, to more easily detect mistakes
firstBad := highestArgIdx + 1
if highestArgIdx == 0 {
// Custom error message for this case
return buf.String(), function.NewArgErrorf(firstBad, "too many arguments; no verbs in format string")
}
return buf.String(), function.NewArgErrorf(firstBad, "too many arguments; only %d used by format string", highestArgIdx)
}
return buf.String(), nil
}

View File

@@ -0,0 +1,198 @@
// This file is generated from format_fsm.rl. DO NOT EDIT.
%%{
# (except you are actually in scan_tokens.rl here, so edit away!)
machine formatfsm;
}%%
package stdlib
import (
"bytes"
"fmt"
"unicode/utf8"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
%%{
write data;
}%%
func formatFSM(format string, a []cty.Value) (string, error) {
var buf bytes.Buffer
data := format
nextArg := 1 // arg numbers are 1-based
var verb formatVerb
highestArgIdx := 0 // zero means "none", since arg numbers are 1-based
%%{
action begin {
verb = formatVerb{
ArgNum: nextArg,
Prec: -1,
Width: -1,
}
ts = p
}
action emit {
buf.WriteByte(fc);
}
action finish_ok {
}
action finish_err {
return buf.String(), fmt.Errorf("invalid format string starting at offset %d", p)
}
action err_char {
// We'll try to slurp a whole UTF-8 sequence here, to give the user
// better feedback.
r, _ := utf8.DecodeRuneInString(data[p:])
return buf.String(), fmt.Errorf("unrecognized format character %q at offset %d", r, p)
}
action flag_sharp {
verb.Sharp = true
}
action flag_zero {
verb.Zero = true
}
action flag_minus {
verb.Minus = true
}
action flag_plus {
verb.Plus = true
}
action flag_space {
verb.Space = true
}
action argidx_reset {
verb.ArgNum = 0
}
action argidx_num {
verb.ArgNum = (10 * verb.ArgNum) + (int(fc) - '0')
}
action has_width {
verb.HasWidth = true
}
action width_reset {
verb.Width = 0
}
action width_num {
verb.Width = (10 * verb.Width) + (int(fc) - '0')
}
action has_prec {
verb.HasPrec = true
}
action prec_reset {
verb.Prec = 0
}
action prec_num {
verb.Prec = (10 * verb.Prec) + (int(fc) - '0')
}
action mode {
verb.Mode = rune(fc)
te = p+1
verb.Raw = data[ts:te]
verb.Offset = ts
if verb.ArgNum > highestArgIdx {
highestArgIdx = verb.ArgNum
}
err := formatAppend(&verb, &buf, a)
if err != nil {
return buf.String(), err
}
nextArg = verb.ArgNum + 1
}
# a number that isn't zero and doesn't have a leading zero
num = [1-9] [0-9]*;
flags = (
'0' @flag_zero |
'#' @flag_sharp |
'-' @flag_minus |
'+' @flag_plus |
' ' @flag_space
)*;
argidx = ((
'[' (num $argidx_num) ']'
) >argidx_reset)?;
width = (
( num $width_num ) >width_reset %has_width
)?;
precision = (
('.' ( digit* $prec_num )) >prec_reset %has_prec
)?;
# We accept any letter here, but will be more picky in formatAppend
mode = ('a'..'z' | 'A'..'Z') @mode;
fmt_verb = (
'%' @begin
flags
width
precision
argidx
mode
);
main := (
[^%] @emit |
'%%' @emit |
fmt_verb
)* @/finish_err %/finish_ok $!err_char;
}%%
// Ragel state
p := 0 // "Pointer" into data
pe := len(data) // End-of-data "pointer"
cs := 0 // current state (will be initialized by ragel-generated code)
ts := 0
te := 0
eof := pe
// Keep Go compiler happy even if generated code doesn't use these
_ = ts
_ = te
_ = eof
%%{
write init;
write exec;
}%%
// If we fall out here without being in a final state then we've
// encountered something that the scanner can't match, which should
// be impossible (the scanner matches all bytes _somehow_) but we'll
// flag it anyway rather than just losing data from the end.
if cs < formatfsm_first_final {
return buf.String(), fmt.Errorf("extraneous characters beginning at offset %d", p)
}
if highestArgIdx < len(a) {
// Extraneous args are an error, to more easily detect mistakes
firstBad := highestArgIdx+1
if highestArgIdx == 0 {
// Custom error message for this case
return buf.String(), function.NewArgErrorf(firstBad, "too many arguments; no verbs in format string")
}
return buf.String(), function.NewArgErrorf(firstBad, "too many arguments; only %d used by format string", highestArgIdx)
}
return buf.String(), nil
}

View File

@@ -0,0 +1,117 @@
package stdlib
import (
"fmt"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/function"
)
var EqualFunc = function.New(&function.Spec{
Description: `Returns true if the two given values are equal, or false otherwise.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.DynamicPseudoType,
AllowUnknown: true,
AllowDynamicType: true,
AllowNull: true,
},
{
Name: "b",
Type: cty.DynamicPseudoType,
AllowUnknown: true,
AllowDynamicType: true,
AllowNull: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return args[0].Equals(args[1]), nil
},
})
var NotEqualFunc = function.New(&function.Spec{
Description: `Returns false if the two given values are equal, or true otherwise.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.DynamicPseudoType,
AllowUnknown: true,
AllowDynamicType: true,
AllowNull: true,
},
{
Name: "b",
Type: cty.DynamicPseudoType,
AllowUnknown: true,
AllowDynamicType: true,
AllowNull: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return args[0].Equals(args[1]).Not(), nil
},
})
var CoalesceFunc = function.New(&function.Spec{
Description: `Returns the first of the given arguments that isn't null, or raises an error if there are no non-null arguments.`,
Params: []function.Parameter{},
VarParam: &function.Parameter{
Name: "vals",
Type: cty.DynamicPseudoType,
AllowUnknown: true,
AllowDynamicType: true,
AllowNull: true,
},
Type: func(args []cty.Value) (ret cty.Type, err error) {
argTypes := make([]cty.Type, len(args))
for i, val := range args {
argTypes[i] = val.Type()
}
retType, _ := convert.UnifyUnsafe(argTypes)
if retType == cty.NilType {
return cty.NilType, fmt.Errorf("all arguments must have the same type")
}
return retType, nil
},
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
for _, argVal := range args {
if !argVal.IsKnown() {
return cty.UnknownVal(retType), nil
}
if argVal.IsNull() {
continue
}
return convert.Convert(argVal, retType)
}
return cty.NilVal, fmt.Errorf("no non-null arguments")
},
})
func refineNonNull(b *cty.RefinementBuilder) *cty.RefinementBuilder {
return b.NotNull()
}
// Equal determines whether the two given values are equal, returning a
// bool value.
func Equal(a cty.Value, b cty.Value) (cty.Value, error) {
return EqualFunc.Call([]cty.Value{a, b})
}
// NotEqual is the opposite of Equal.
func NotEqual(a cty.Value, b cty.Value) (cty.Value, error) {
return NotEqualFunc.Call([]cty.Value{a, b})
}
// Coalesce returns the first of the given arguments that is not null. If
// all arguments are null, an error is produced.
func Coalesce(vals ...cty.Value) (cty.Value, error) {
return CoalesceFunc.Call(vals)
}

View File

@@ -0,0 +1,146 @@
package stdlib
import (
"bytes"
"strings"
"unicode/utf8"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/json"
)
var JSONEncodeFunc = function.New(&function.Spec{
Description: `Returns a string containing a JSON representation of the given value.`,
Params: []function.Parameter{
{
Name: "val",
Type: cty.DynamicPseudoType,
AllowUnknown: true,
AllowDynamicType: true,
AllowNull: true,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
val := args[0]
if !val.IsWhollyKnown() {
// We can't serialize unknowns, so if the value is unknown or
// contains any _nested_ unknowns then our result must be
// unknown. However, we might still be able to at least constrain
// the prefix of our string so that downstreams can sniff for
// whether it's valid JSON and what result types it could have.
valRng := val.Range()
if valRng.CouldBeNull() {
// If null is possible then we can't constrain the result
// beyond the type constraint, because the very first character
// of the string is what distinguishes a null.
return cty.UnknownVal(retType), nil
}
b := cty.UnknownVal(retType).Refine()
ty := valRng.TypeConstraint()
switch {
case ty == cty.String:
b = b.StringPrefixFull(`"`)
case ty.IsObjectType() || ty.IsMapType():
b = b.StringPrefixFull("{")
case ty.IsTupleType() || ty.IsListType() || ty.IsSetType():
b = b.StringPrefixFull("[")
}
return b.NewValue(), nil
}
if val.IsNull() {
return cty.StringVal("null"), nil
}
buf, err := json.Marshal(val, val.Type())
if err != nil {
return cty.NilVal, err
}
// json.Marshal should already produce a trimmed string, but we'll
// make sure it always is because our unknown value refinements above
// assume there will be no leading whitespace before the value.
buf = bytes.TrimSpace(buf)
return cty.StringVal(string(buf)), nil
},
})
var JSONDecodeFunc = function.New(&function.Spec{
Description: `Parses the given string as JSON and returns a value corresponding to what the JSON document describes.`,
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: func(args []cty.Value) (cty.Type, error) {
str := args[0]
if !str.IsKnown() {
// If the string isn't known then we can't fully parse it, but
// if the value has been refined with a prefix then we may at
// least be able to reject obviously-invalid syntax and maybe
// even predict the result type. It's safe to return a specific
// result type only if parsing a full document with this prefix
// would return exactly that type or fail with a syntax error.
rng := str.Range()
if prefix := strings.TrimSpace(rng.StringPrefix()); prefix != "" {
// If we know at least one character then it should be one
// of the few characters that can introduce a JSON value.
switch r, _ := utf8.DecodeRuneInString(prefix); r {
case '{', '[':
// These can start object values and array values
// respectively, but we can't actually form a full
// object type constraint or tuple type constraint
// without knowing all of the attributes, so we
// will still return DynamicPseudoType in this case.
case '"':
// This means that the result will either be a string
// or parsing will fail.
return cty.String, nil
case 't', 'f':
// Must either be a boolean value or a syntax error.
return cty.Bool, nil
case '-', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '.':
// These characters would all start the "number" production.
return cty.Number, nil
case 'n':
// n is valid to begin the keyword "null" but that doesn't
// give us any extra type information.
default:
// No other characters are valid as the beginning of a
// JSON value, so we can safely return an early error.
return cty.NilType, function.NewArgErrorf(0, "a JSON document cannot begin with the character %q", r)
}
}
return cty.DynamicPseudoType, nil
}
buf := []byte(str.AsString())
return json.ImpliedType(buf)
},
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
buf := []byte(args[0].AsString())
return json.Unmarshal(buf, retType)
},
})
// JSONEncode returns a JSON serialization of the given value.
func JSONEncode(val cty.Value) (cty.Value, error) {
return JSONEncodeFunc.Call([]cty.Value{val})
}
// JSONDecode parses the given JSON string and, if it is valid, returns the
// value it represents.
//
// Note that applying JSONDecode to the result of JSONEncode may not produce
// an identically-typed result, since JSON encoding is lossy for cty Types.
// The resulting value will consist only of primitive types, object types, and
// tuple types.
func JSONDecode(str cty.Value) (cty.Value, error) {
return JSONDecodeFunc.Call([]cty.Value{str})
}

View File

@@ -0,0 +1,715 @@
package stdlib
import (
"fmt"
"math"
"math/big"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/gocty"
)
var AbsoluteFunc = function.New(&function.Spec{
Description: `If the given number is negative then returns its positive equivalent, or otherwise returns the given number unchanged.`,
Params: []function.Parameter{
{
Name: "num",
Type: cty.Number,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return args[0].Absolute(), nil
},
})
var AddFunc = function.New(&function.Spec{
Description: `Returns the sum of the two given numbers.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowDynamicType: true,
},
{
Name: "b",
Type: cty.Number,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
// big.Float.Add can panic if the input values are opposing infinities,
// so we must catch that here in order to remain within
// the cty Function abstraction.
defer func() {
if r := recover(); r != nil {
if _, ok := r.(big.ErrNaN); ok {
ret = cty.NilVal
err = fmt.Errorf("can't compute sum of opposing infinities")
} else {
// not a panic we recognize
panic(r)
}
}
}()
return args[0].Add(args[1]), nil
},
})
var SubtractFunc = function.New(&function.Spec{
Description: `Returns the difference between the two given numbers.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowDynamicType: true,
},
{
Name: "b",
Type: cty.Number,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
// big.Float.Sub can panic if the input values are infinities,
// so we must catch that here in order to remain within
// the cty Function abstraction.
defer func() {
if r := recover(); r != nil {
if _, ok := r.(big.ErrNaN); ok {
ret = cty.NilVal
err = fmt.Errorf("can't subtract infinity from itself")
} else {
// not a panic we recognize
panic(r)
}
}
}()
return args[0].Subtract(args[1]), nil
},
})
var MultiplyFunc = function.New(&function.Spec{
Description: `Returns the product of the two given numbers.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowDynamicType: true,
},
{
Name: "b",
Type: cty.Number,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
// big.Float.Mul can panic if the input values are both zero or both
// infinity, so we must catch that here in order to remain within
// the cty Function abstraction.
defer func() {
if r := recover(); r != nil {
if _, ok := r.(big.ErrNaN); ok {
ret = cty.NilVal
err = fmt.Errorf("can't multiply zero by infinity")
} else {
// not a panic we recognize
panic(r)
}
}
}()
return args[0].Multiply(args[1]), nil
},
})
var DivideFunc = function.New(&function.Spec{
Description: `Divides the first given number by the second.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowDynamicType: true,
},
{
Name: "b",
Type: cty.Number,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
// big.Float.Quo can panic if the input values are both zero or both
// infinity, so we must catch that here in order to remain within
// the cty Function abstraction.
defer func() {
if r := recover(); r != nil {
if _, ok := r.(big.ErrNaN); ok {
ret = cty.NilVal
err = fmt.Errorf("can't divide zero by zero or infinity by infinity")
} else {
// not a panic we recognize
panic(r)
}
}
}()
return args[0].Divide(args[1]), nil
},
})
var ModuloFunc = function.New(&function.Spec{
Description: `Divides the first given number by the second and then returns the remainder.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowDynamicType: true,
},
{
Name: "b",
Type: cty.Number,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
// big.Float.Mul can panic if the input values are both zero or both
// infinity, so we must catch that here in order to remain within
// the cty Function abstraction.
defer func() {
if r := recover(); r != nil {
if _, ok := r.(big.ErrNaN); ok {
ret = cty.NilVal
err = fmt.Errorf("can't use modulo with zero and infinity")
} else {
// not a panic we recognize
panic(r)
}
}
}()
return args[0].Modulo(args[1]), nil
},
})
var GreaterThanFunc = function.New(&function.Spec{
Description: `Returns true if and only if the second number is greater than the first.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowUnknown: true,
AllowDynamicType: true,
AllowMarked: true,
},
{
Name: "b",
Type: cty.Number,
AllowUnknown: true,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return args[0].GreaterThan(args[1]), nil
},
})
var GreaterThanOrEqualToFunc = function.New(&function.Spec{
Description: `Returns true if and only if the second number is greater than or equal to the first.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowUnknown: true,
AllowDynamicType: true,
AllowMarked: true,
},
{
Name: "b",
Type: cty.Number,
AllowUnknown: true,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return args[0].GreaterThanOrEqualTo(args[1]), nil
},
})
var LessThanFunc = function.New(&function.Spec{
Description: `Returns true if and only if the second number is less than the first.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowUnknown: true,
AllowDynamicType: true,
AllowMarked: true,
},
{
Name: "b",
Type: cty.Number,
AllowUnknown: true,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return args[0].LessThan(args[1]), nil
},
})
var LessThanOrEqualToFunc = function.New(&function.Spec{
Description: `Returns true if and only if the second number is less than or equal to the first.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Number,
AllowUnknown: true,
AllowDynamicType: true,
AllowMarked: true,
},
{
Name: "b",
Type: cty.Number,
AllowUnknown: true,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return args[0].LessThanOrEqualTo(args[1]), nil
},
})
var NegateFunc = function.New(&function.Spec{
Description: `Multiplies the given number by -1.`,
Params: []function.Parameter{
{
Name: "num",
Type: cty.Number,
AllowDynamicType: true,
AllowMarked: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return args[0].Negate(), nil
},
})
var MinFunc = function.New(&function.Spec{
Description: `Returns the numerically smallest of all of the given numbers.`,
Params: []function.Parameter{},
VarParam: &function.Parameter{
Name: "numbers",
Type: cty.Number,
AllowDynamicType: true,
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
if len(args) == 0 {
return cty.NilVal, fmt.Errorf("must pass at least one number")
}
min := cty.PositiveInfinity
for _, num := range args {
if num.LessThan(min).True() {
min = num
}
}
return min, nil
},
})
var MaxFunc = function.New(&function.Spec{
Description: `Returns the numerically greatest of all of the given numbers.`,
Params: []function.Parameter{},
VarParam: &function.Parameter{
Name: "numbers",
Type: cty.Number,
AllowDynamicType: true,
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
if len(args) == 0 {
return cty.NilVal, fmt.Errorf("must pass at least one number")
}
max := cty.NegativeInfinity
for _, num := range args {
if num.GreaterThan(max).True() {
max = num
}
}
return max, nil
},
})
var IntFunc = function.New(&function.Spec{
Description: `Discards any fractional portion of the given number.`,
Params: []function.Parameter{
{
Name: "num",
Type: cty.Number,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
bf := args[0].AsBigFloat()
if bf.IsInt() {
return args[0], nil
}
bi, _ := bf.Int(nil)
bf = (&big.Float{}).SetInt(bi)
return cty.NumberVal(bf), nil
},
})
// CeilFunc is a function that returns the closest whole number greater
// than or equal to the given value.
var CeilFunc = function.New(&function.Spec{
Description: `Returns the smallest whole number that is greater than or equal to the given value.`,
Params: []function.Parameter{
{
Name: "num",
Type: cty.Number,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
f := args[0].AsBigFloat()
if f.IsInf() {
return cty.NumberVal(f), nil
}
i, acc := f.Int(nil)
switch acc {
case big.Exact, big.Above:
// Done.
case big.Below:
i.Add(i, big.NewInt(1))
}
return cty.NumberVal(f.SetInt(i)), nil
},
})
// FloorFunc is a function that returns the closest whole number lesser
// than or equal to the given value.
var FloorFunc = function.New(&function.Spec{
Description: `Returns the greatest whole number that is less than or equal to the given value.`,
Params: []function.Parameter{
{
Name: "num",
Type: cty.Number,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
f := args[0].AsBigFloat()
if f.IsInf() {
return cty.NumberVal(f), nil
}
i, acc := f.Int(nil)
switch acc {
case big.Exact, big.Below:
// Done.
case big.Above:
i.Sub(i, big.NewInt(1))
}
return cty.NumberVal(f.SetInt(i)), nil
},
})
// LogFunc is a function that returns the logarithm of a given number in a given base.
var LogFunc = function.New(&function.Spec{
Description: `Returns the logarithm of the given number in the given base.`,
Params: []function.Parameter{
{
Name: "num",
Type: cty.Number,
},
{
Name: "base",
Type: cty.Number,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
var num float64
if err := gocty.FromCtyValue(args[0], &num); err != nil {
return cty.UnknownVal(cty.String), err
}
var base float64
if err := gocty.FromCtyValue(args[1], &base); err != nil {
return cty.UnknownVal(cty.String), err
}
return cty.NumberFloatVal(math.Log(num) / math.Log(base)), nil
},
})
// PowFunc is a function that returns the logarithm of a given number in a given base.
var PowFunc = function.New(&function.Spec{
Description: `Returns the given number raised to the given power (exponentiation).`,
Params: []function.Parameter{
{
Name: "num",
Type: cty.Number,
},
{
Name: "power",
Type: cty.Number,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
var num float64
if err := gocty.FromCtyValue(args[0], &num); err != nil {
return cty.UnknownVal(cty.String), err
}
var power float64
if err := gocty.FromCtyValue(args[1], &power); err != nil {
return cty.UnknownVal(cty.String), err
}
return cty.NumberFloatVal(math.Pow(num, power)), nil
},
})
// SignumFunc is a function that determines the sign of a number, returning a
// number between -1 and 1 to represent the sign..
var SignumFunc = function.New(&function.Spec{
Description: `Returns 0 if the given number is zero, 1 if the given number is positive, or -1 if the given number is negative.`,
Params: []function.Parameter{
{
Name: "num",
Type: cty.Number,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
var num int
if err := gocty.FromCtyValue(args[0], &num); err != nil {
return cty.UnknownVal(cty.String), err
}
switch {
case num < 0:
return cty.NumberIntVal(-1), nil
case num > 0:
return cty.NumberIntVal(+1), nil
default:
return cty.NumberIntVal(0), nil
}
},
})
// ParseIntFunc is a function that parses a string argument and returns an integer of the specified base.
var ParseIntFunc = function.New(&function.Spec{
Description: `Parses the given string as a number of the given base, or raises an error if the string contains invalid characters.`,
Params: []function.Parameter{
{
Name: "number",
Type: cty.DynamicPseudoType,
},
{
Name: "base",
Type: cty.Number,
},
},
Type: func(args []cty.Value) (cty.Type, error) {
if !args[0].Type().Equals(cty.String) {
return cty.Number, function.NewArgErrorf(0, "first argument must be a string, not %s", args[0].Type().FriendlyName())
}
return cty.Number, nil
},
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
var numstr string
var base int
var err error
if err = gocty.FromCtyValue(args[0], &numstr); err != nil {
return cty.UnknownVal(cty.String), function.NewArgError(0, err)
}
if err = gocty.FromCtyValue(args[1], &base); err != nil {
return cty.UnknownVal(cty.Number), function.NewArgError(1, err)
}
if base < 2 || base > 62 {
return cty.UnknownVal(cty.Number), function.NewArgErrorf(
1,
"base must be a whole number between 2 and 62 inclusive",
)
}
num, ok := (&big.Int{}).SetString(numstr, base)
if !ok {
return cty.UnknownVal(cty.Number), function.NewArgErrorf(
0,
"cannot parse %q as a base %d integer",
numstr,
base,
)
}
parsedNum := cty.NumberVal((&big.Float{}).SetInt(num))
return parsedNum, nil
},
})
// Absolute returns the magnitude of the given number, without its sign.
// That is, it turns negative values into positive values.
func Absolute(num cty.Value) (cty.Value, error) {
return AbsoluteFunc.Call([]cty.Value{num})
}
// Add returns the sum of the two given numbers.
func Add(a cty.Value, b cty.Value) (cty.Value, error) {
return AddFunc.Call([]cty.Value{a, b})
}
// Subtract returns the difference between the two given numbers.
func Subtract(a cty.Value, b cty.Value) (cty.Value, error) {
return SubtractFunc.Call([]cty.Value{a, b})
}
// Multiply returns the product of the two given numbers.
func Multiply(a cty.Value, b cty.Value) (cty.Value, error) {
return MultiplyFunc.Call([]cty.Value{a, b})
}
// Divide returns a divided by b, where both a and b are numbers.
func Divide(a cty.Value, b cty.Value) (cty.Value, error) {
return DivideFunc.Call([]cty.Value{a, b})
}
// Negate returns the given number multipled by -1.
func Negate(num cty.Value) (cty.Value, error) {
return NegateFunc.Call([]cty.Value{num})
}
// LessThan returns true if a is less than b.
func LessThan(a cty.Value, b cty.Value) (cty.Value, error) {
return LessThanFunc.Call([]cty.Value{a, b})
}
// LessThanOrEqualTo returns true if a is less than b.
func LessThanOrEqualTo(a cty.Value, b cty.Value) (cty.Value, error) {
return LessThanOrEqualToFunc.Call([]cty.Value{a, b})
}
// GreaterThan returns true if a is less than b.
func GreaterThan(a cty.Value, b cty.Value) (cty.Value, error) {
return GreaterThanFunc.Call([]cty.Value{a, b})
}
// GreaterThanOrEqualTo returns true if a is less than b.
func GreaterThanOrEqualTo(a cty.Value, b cty.Value) (cty.Value, error) {
return GreaterThanOrEqualToFunc.Call([]cty.Value{a, b})
}
// Modulo returns the remainder of a divided by b under integer division,
// where both a and b are numbers.
func Modulo(a cty.Value, b cty.Value) (cty.Value, error) {
return ModuloFunc.Call([]cty.Value{a, b})
}
// Min returns the minimum number from the given numbers.
func Min(numbers ...cty.Value) (cty.Value, error) {
return MinFunc.Call(numbers)
}
// Max returns the maximum number from the given numbers.
func Max(numbers ...cty.Value) (cty.Value, error) {
return MaxFunc.Call(numbers)
}
// Int removes the fractional component of the given number returning an
// integer representing the whole number component, rounding towards zero.
// For example, -1.5 becomes -1.
//
// If an infinity is passed to Int, an error is returned.
func Int(num cty.Value) (cty.Value, error) {
if num == cty.PositiveInfinity || num == cty.NegativeInfinity {
return cty.NilVal, fmt.Errorf("can't truncate infinity to an integer")
}
return IntFunc.Call([]cty.Value{num})
}
// Ceil returns the closest whole number greater than or equal to the given value.
func Ceil(num cty.Value) (cty.Value, error) {
return CeilFunc.Call([]cty.Value{num})
}
// Floor returns the closest whole number lesser than or equal to the given value.
func Floor(num cty.Value) (cty.Value, error) {
return FloorFunc.Call([]cty.Value{num})
}
// Log returns returns the logarithm of a given number in a given base.
func Log(num, base cty.Value) (cty.Value, error) {
return LogFunc.Call([]cty.Value{num, base})
}
// Pow returns the logarithm of a given number in a given base.
func Pow(num, power cty.Value) (cty.Value, error) {
return PowFunc.Call([]cty.Value{num, power})
}
// Signum determines the sign of a number, returning a number between -1 and
// 1 to represent the sign.
func Signum(num cty.Value) (cty.Value, error) {
return SignumFunc.Call([]cty.Value{num})
}
// ParseInt parses a string argument and returns an integer of the specified base.
func ParseInt(num cty.Value, base cty.Value) (cty.Value, error) {
return ParseIntFunc.Call([]cty.Value{num, base})
}

View File

@@ -0,0 +1,237 @@
package stdlib
import (
"fmt"
"regexp"
resyntax "regexp/syntax"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
var RegexFunc = function.New(&function.Spec{
Description: `Applies the given regular expression pattern to the given string and returns information about a single match, or raises an error if there is no match.`,
Params: []function.Parameter{
{
Name: "pattern",
Type: cty.String,
},
{
Name: "string",
Type: cty.String,
},
},
Type: func(args []cty.Value) (cty.Type, error) {
if !args[0].IsKnown() {
// We can't predict our type without seeing our pattern
return cty.DynamicPseudoType, nil
}
retTy, err := regexPatternResultType(args[0].AsString())
if err != nil {
err = function.NewArgError(0, err)
}
return retTy, err
},
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
if retType == cty.DynamicPseudoType {
return cty.DynamicVal, nil
}
re, err := regexp.Compile(args[0].AsString())
if err != nil {
// Should never happen, since we checked this in the Type function above.
return cty.NilVal, function.NewArgErrorf(0, "error parsing pattern: %s", err)
}
str := args[1].AsString()
captureIdxs := re.FindStringSubmatchIndex(str)
if captureIdxs == nil {
return cty.NilVal, fmt.Errorf("pattern did not match any part of the given string")
}
return regexPatternResult(re, str, captureIdxs, retType), nil
},
})
var RegexAllFunc = function.New(&function.Spec{
Description: `Applies the given regular expression pattern to the given string and returns a list of information about all non-overlapping matches, or an empty list if there are no matches.`,
Params: []function.Parameter{
{
Name: "pattern",
Type: cty.String,
},
{
Name: "string",
Type: cty.String,
},
},
Type: func(args []cty.Value) (cty.Type, error) {
if !args[0].IsKnown() {
// We can't predict our type without seeing our pattern,
// but we do know it'll always be a list of something.
return cty.List(cty.DynamicPseudoType), nil
}
retTy, err := regexPatternResultType(args[0].AsString())
if err != nil {
err = function.NewArgError(0, err)
}
return cty.List(retTy), err
},
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
ety := retType.ElementType()
if ety == cty.DynamicPseudoType {
return cty.DynamicVal, nil
}
re, err := regexp.Compile(args[0].AsString())
if err != nil {
// Should never happen, since we checked this in the Type function above.
return cty.NilVal, function.NewArgErrorf(0, "error parsing pattern: %s", err)
}
str := args[1].AsString()
captureIdxsEach := re.FindAllStringSubmatchIndex(str, -1)
if len(captureIdxsEach) == 0 {
return cty.ListValEmpty(ety), nil
}
elems := make([]cty.Value, len(captureIdxsEach))
for i, captureIdxs := range captureIdxsEach {
elems[i] = regexPatternResult(re, str, captureIdxs, ety)
}
return cty.ListVal(elems), nil
},
})
// Regex is a function that extracts one or more substrings from a given
// string by applying a regular expression pattern, describing the first
// match.
//
// The return type depends on the composition of the capture groups (if any)
// in the pattern:
//
// - If there are no capture groups at all, the result is a single string
// representing the entire matched pattern.
// - If all of the capture groups are named, the result is an object whose
// keys are the named groups and whose values are their sub-matches, or
// null if a particular sub-group was inside another group that didn't
// match.
// - If none of the capture groups are named, the result is a tuple whose
// elements are the sub-groups in order and whose values are their
// sub-matches, or null if a particular sub-group was inside another group
// that didn't match.
// - It is invalid to use both named and un-named capture groups together in
// the same pattern.
//
// If the pattern doesn't match, this function returns an error. To test for
// a match, call RegexAll and check if the length of the result is greater
// than zero.
func Regex(pattern, str cty.Value) (cty.Value, error) {
return RegexFunc.Call([]cty.Value{pattern, str})
}
// RegexAll is similar to Regex but it finds all of the non-overlapping matches
// in the given string and returns a list of them.
//
// The result type is always a list, whose element type is deduced from the
// pattern in the same way as the return type for Regex is decided.
//
// If the pattern doesn't match at all, this function returns an empty list.
func RegexAll(pattern, str cty.Value) (cty.Value, error) {
return RegexAllFunc.Call([]cty.Value{pattern, str})
}
// regexPatternResultType parses the given regular expression pattern and
// returns the structural type that would be returned to represent its
// capture groups.
//
// Returns an error if parsing fails or if the pattern uses a mixture of
// named and unnamed capture groups, which is not permitted.
func regexPatternResultType(pattern string) (cty.Type, error) {
re, rawErr := regexp.Compile(pattern)
switch err := rawErr.(type) {
case *resyntax.Error:
return cty.NilType, fmt.Errorf("invalid regexp pattern: %s in %s", err.Code, err.Expr)
case error:
// Should never happen, since all regexp compile errors should
// be resyntax.Error, but just in case...
return cty.NilType, fmt.Errorf("error parsing pattern: %s", err)
}
allNames := re.SubexpNames()[1:]
var names []string
unnamed := 0
for _, name := range allNames {
if name == "" {
unnamed++
} else {
if names == nil {
names = make([]string, 0, len(allNames))
}
names = append(names, name)
}
}
switch {
case unnamed == 0 && len(names) == 0:
// If there are no capture groups at all then we'll return just a
// single string for the whole match.
return cty.String, nil
case unnamed > 0 && len(names) > 0:
return cty.NilType, fmt.Errorf("invalid regexp pattern: cannot mix both named and unnamed capture groups")
case unnamed > 0:
// For unnamed captures, we return a tuple of them all in order.
etys := make([]cty.Type, unnamed)
for i := range etys {
etys[i] = cty.String
}
return cty.Tuple(etys), nil
default:
// For named captures, we return an object using the capture names
// as keys.
atys := make(map[string]cty.Type, len(names))
for _, name := range names {
atys[name] = cty.String
}
return cty.Object(atys), nil
}
}
func regexPatternResult(re *regexp.Regexp, str string, captureIdxs []int, retType cty.Type) cty.Value {
switch {
case retType == cty.String:
start, end := captureIdxs[0], captureIdxs[1]
return cty.StringVal(str[start:end])
case retType.IsTupleType():
captureIdxs = captureIdxs[2:] // index 0 is the whole pattern span, which we ignore by skipping one pair
vals := make([]cty.Value, len(captureIdxs)/2)
for i := range vals {
start, end := captureIdxs[i*2], captureIdxs[i*2+1]
if start < 0 || end < 0 {
vals[i] = cty.NullVal(cty.String) // Did not match anything because containing group didn't match
continue
}
vals[i] = cty.StringVal(str[start:end])
}
return cty.TupleVal(vals)
case retType.IsObjectType():
captureIdxs = captureIdxs[2:] // index 0 is the whole pattern span, which we ignore by skipping one pair
vals := make(map[string]cty.Value, len(captureIdxs)/2)
names := re.SubexpNames()[1:]
for i, name := range names {
start, end := captureIdxs[i*2], captureIdxs[i*2+1]
if start < 0 || end < 0 {
vals[name] = cty.NullVal(cty.String) // Did not match anything because containing group didn't match
continue
}
vals[name] = cty.StringVal(str[start:end])
}
return cty.ObjectVal(vals)
default:
// Should never happen
panic(fmt.Sprintf("invalid return type %#v", retType))
}
}

View File

@@ -0,0 +1,239 @@
package stdlib
import (
"fmt"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/function"
)
var ConcatFunc = function.New(&function.Spec{
Description: `Concatenates together all of the given lists or tuples into a single sequence, preserving the input order.`,
Params: []function.Parameter{},
VarParam: &function.Parameter{
Name: "seqs",
Type: cty.DynamicPseudoType,
AllowMarked: true,
},
Type: func(args []cty.Value) (ret cty.Type, err error) {
if len(args) == 0 {
return cty.NilType, fmt.Errorf("at least one argument is required")
}
if args[0].Type().IsListType() {
// Possibly we're going to return a list, if all of our other
// args are also lists and we can find a common element type.
tys := make([]cty.Type, len(args))
for i, val := range args {
ty := val.Type()
if !ty.IsListType() {
tys = nil
break
}
tys[i] = ty
}
if tys != nil {
commonType, _ := convert.UnifyUnsafe(tys)
if commonType != cty.NilType {
return commonType, nil
}
}
}
etys := make([]cty.Type, 0, len(args))
for i, val := range args {
// Discard marks for nested values, as we only need to handle types
// and lengths.
val, _ := val.UnmarkDeep()
ety := val.Type()
switch {
case ety.IsTupleType():
etys = append(etys, ety.TupleElementTypes()...)
case ety.IsListType():
if !val.IsKnown() {
// We need to know the list to count its elements to
// build our tuple type, so any concat of an unknown
// list can't be typed yet.
return cty.DynamicPseudoType, nil
}
l := val.LengthInt()
subEty := ety.ElementType()
for j := 0; j < l; j++ {
etys = append(etys, subEty)
}
default:
return cty.NilType, function.NewArgErrorf(
i, "all arguments must be lists or tuples; got %s",
ety.FriendlyName(),
)
}
}
return cty.Tuple(etys), nil
},
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
switch {
case retType.IsListType():
// If retType is a list type then we know that all of the
// given values will be lists and that they will either be of
// retType or of something we can convert to retType.
vals := make([]cty.Value, 0, len(args))
var markses []cty.ValueMarks // remember any marked lists we find
for i, list := range args {
list, err = convert.Convert(list, retType)
if err != nil {
// Conversion might fail because we used UnifyUnsafe
// to choose our return type.
return cty.NilVal, function.NewArgError(i, err)
}
list, listMarks := list.Unmark()
if len(listMarks) > 0 {
markses = append(markses, listMarks)
}
it := list.ElementIterator()
for it.Next() {
_, v := it.Element()
vals = append(vals, v)
}
}
if len(vals) == 0 {
return cty.ListValEmpty(retType.ElementType()).WithMarks(markses...), nil
}
return cty.ListVal(vals).WithMarks(markses...), nil
case retType.IsTupleType():
// If retType is a tuple type then we could have a mixture of
// lists and tuples but we know they all have known values
// (because our params don't AllowUnknown) and we know that
// concatenating them all together will produce a tuple of
// retType because of the work we did in the Type function above.
vals := make([]cty.Value, 0, len(args))
var markses []cty.ValueMarks // remember any marked seqs we find
for _, seq := range args {
seq, seqMarks := seq.Unmark()
if len(seqMarks) > 0 {
markses = append(markses, seqMarks)
}
// Both lists and tuples support ElementIterator, so this is easy.
it := seq.ElementIterator()
for it.Next() {
_, v := it.Element()
vals = append(vals, v)
}
}
return cty.TupleVal(vals).WithMarks(markses...), nil
default:
// should never happen if Type is working correctly above
panic("unsupported return type")
}
},
})
var RangeFunc = function.New(&function.Spec{
Description: `Returns a list of numbers spread evenly over a particular range.`,
VarParam: &function.Parameter{
Name: "params",
Type: cty.Number,
},
Type: function.StaticReturnType(cty.List(cty.Number)),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
var start, end, step cty.Value
switch len(args) {
case 1:
if args[0].LessThan(cty.Zero).True() {
start, end, step = cty.Zero, args[0], cty.NumberIntVal(-1)
} else {
start, end, step = cty.Zero, args[0], cty.NumberIntVal(1)
}
case 2:
if args[1].LessThan(args[0]).True() {
start, end, step = args[0], args[1], cty.NumberIntVal(-1)
} else {
start, end, step = args[0], args[1], cty.NumberIntVal(1)
}
case 3:
start, end, step = args[0], args[1], args[2]
default:
return cty.NilVal, fmt.Errorf("must have one, two, or three arguments")
}
var vals []cty.Value
if step == cty.Zero {
return cty.NilVal, function.NewArgErrorf(2, "step must not be zero")
}
down := step.LessThan(cty.Zero).True()
if down {
if end.GreaterThan(start).True() {
return cty.NilVal, function.NewArgErrorf(1, "end must be less than start when step is negative")
}
} else {
if end.LessThan(start).True() {
return cty.NilVal, function.NewArgErrorf(1, "end must be greater than start when step is positive")
}
}
num := start
for {
if down {
if num.LessThanOrEqualTo(end).True() {
break
}
} else {
if num.GreaterThanOrEqualTo(end).True() {
break
}
}
if len(vals) >= 1024 {
// Artificial limit to prevent bad arguments from consuming huge amounts of memory
return cty.NilVal, fmt.Errorf("more than 1024 values were generated; either decrease the difference between start and end or use a smaller step")
}
vals = append(vals, num)
num = num.Add(step)
}
if len(vals) == 0 {
return cty.ListValEmpty(cty.Number), nil
}
return cty.ListVal(vals), nil
},
})
// Concat takes one or more sequences (lists or tuples) and returns the single
// sequence that results from concatenating them together in order.
//
// If all of the given sequences are lists of the same element type then the
// result is a list of that type. Otherwise, the result is a of a tuple type
// constructed from the given sequence types.
func Concat(seqs ...cty.Value) (cty.Value, error) {
return ConcatFunc.Call(seqs)
}
// Range creates a list of numbers by starting from the given starting value,
// then adding the given step value until the result is greater than or
// equal to the given stopping value. Each intermediate result becomes an
// element in the resulting list.
//
// When all three parameters are set, the order is (start, end, step). If
// only two parameters are set, they are the start and end respectively and
// step defaults to 1. If only one argument is set, it gives the end value
// with start defaulting to 0 and step defaulting to 1.
//
// Because the resulting list must be fully buffered in memory, there is an
// artificial cap of 1024 elements, after which this function will return
// an error to avoid consuming unbounded amounts of memory. The Range function
// is primarily intended for creating small lists of indices to iterate over,
// so there should be no reason to generate huge lists with it.
func Range(params ...cty.Value) (cty.Value, error) {
return RangeFunc.Call(params)
}

View File

@@ -0,0 +1,232 @@
package stdlib
import (
"fmt"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
var SetHasElementFunc = function.New(&function.Spec{
Description: `Returns true if the given set contains the given element, or false otherwise.`,
Params: []function.Parameter{
{
Name: "set",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
{
Name: "elem",
Type: cty.DynamicPseudoType,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Bool),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return args[0].HasElement(args[1]), nil
},
})
var SetUnionFunc = function.New(&function.Spec{
Description: `Returns the union of all given sets.`,
Params: []function.Parameter{
{
Name: "first_set",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
},
VarParam: &function.Parameter{
Name: "other_sets",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
Type: setOperationReturnType,
RefineResult: refineNonNull,
Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet {
return s1.Union(s2)
}, true),
})
var SetIntersectionFunc = function.New(&function.Spec{
Description: `Returns the intersection of all given sets.`,
Params: []function.Parameter{
{
Name: "first_set",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
},
VarParam: &function.Parameter{
Name: "other_sets",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
Type: setOperationReturnType,
RefineResult: refineNonNull,
Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet {
return s1.Intersection(s2)
}, false),
})
var SetSubtractFunc = function.New(&function.Spec{
Description: `Returns the relative complement of the two given sets.`,
Params: []function.Parameter{
{
Name: "a",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
{
Name: "b",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
},
Type: setOperationReturnType,
RefineResult: refineNonNull,
Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet {
return s1.Subtract(s2)
}, false),
})
var SetSymmetricDifferenceFunc = function.New(&function.Spec{
Description: `Returns the symmetric difference of the two given sets.`,
Params: []function.Parameter{
{
Name: "first_set",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
},
VarParam: &function.Parameter{
Name: "other_sets",
Type: cty.Set(cty.DynamicPseudoType),
AllowDynamicType: true,
},
Type: setOperationReturnType,
RefineResult: refineNonNull,
Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet {
return s1.SymmetricDifference(s2)
}, false),
})
// SetHasElement determines whether the given set contains the given value as an
// element.
func SetHasElement(set cty.Value, elem cty.Value) (cty.Value, error) {
return SetHasElementFunc.Call([]cty.Value{set, elem})
}
// SetUnion returns a new set containing all of the elements from the given
// sets, which must have element types that can all be converted to some
// common type using the standard type unification rules. If conversion
// is not possible, an error is returned.
//
// The union operation is performed after type conversion, which may result
// in some previously-distinct values being conflated.
//
// At least one set must be provided.
func SetUnion(sets ...cty.Value) (cty.Value, error) {
return SetUnionFunc.Call(sets)
}
// Intersection returns a new set containing the elements that exist
// in all of the given sets, which must have element types that can all be
// converted to some common type using the standard type unification rules.
// If conversion is not possible, an error is returned.
//
// The intersection operation is performed after type conversion, which may
// result in some previously-distinct values being conflated.
//
// At least one set must be provided.
func SetIntersection(sets ...cty.Value) (cty.Value, error) {
return SetIntersectionFunc.Call(sets)
}
// SetSubtract returns a new set containing the elements from the
// first set that are not present in the second set. The sets must have
// element types that can both be converted to some common type using the
// standard type unification rules. If conversion is not possible, an error
// is returned.
//
// The subtract operation is performed after type conversion, which may
// result in some previously-distinct values being conflated.
func SetSubtract(a, b cty.Value) (cty.Value, error) {
return SetSubtractFunc.Call([]cty.Value{a, b})
}
// SetSymmetricDifference returns a new set containing elements that appear
// in any of the given sets but not multiple. The sets must have
// element types that can all be converted to some common type using the
// standard type unification rules. If conversion is not possible, an error
// is returned.
//
// The difference operation is performed after type conversion, which may
// result in some previously-distinct values being conflated.
func SetSymmetricDifference(sets ...cty.Value) (cty.Value, error) {
return SetSymmetricDifferenceFunc.Call(sets)
}
func setOperationReturnType(args []cty.Value) (ret cty.Type, err error) {
var etys []cty.Type
for _, arg := range args {
ty := arg.Type().ElementType()
// Do not unify types for empty dynamic pseudo typed collections. These
// will always convert to any other concrete type.
if arg.IsKnown() && arg.LengthInt() == 0 && ty.Equals(cty.DynamicPseudoType) {
continue
}
etys = append(etys, ty)
}
// If all element types were skipped (due to being empty dynamic collections),
// the return type should also be a set of dynamic pseudo type.
if len(etys) == 0 {
return cty.Set(cty.DynamicPseudoType), nil
}
newEty, _ := convert.UnifyUnsafe(etys)
if newEty == cty.NilType {
return cty.NilType, fmt.Errorf("given sets must all have compatible element types")
}
return cty.Set(newEty), nil
}
func setOperationImpl(f func(s1, s2 cty.ValueSet) cty.ValueSet, allowUnknowns bool) function.ImplFunc {
return func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
first := args[0]
first, err = convert.Convert(first, retType)
if err != nil {
return cty.NilVal, function.NewArgError(0, err)
}
if !allowUnknowns && !first.IsWhollyKnown() {
// This set function can produce a correct result only when all
// elements are known, because eventually knowing the unknown
// values may cause the result to have fewer known elements, or
// might cause a result with no unknown elements at all to become
// one with a different length.
return cty.UnknownVal(retType), nil
}
set := first.AsValueSet()
for i, arg := range args[1:] {
arg, err := convert.Convert(arg, retType)
if err != nil {
return cty.NilVal, function.NewArgError(i+1, err)
}
if !allowUnknowns && !arg.IsWhollyKnown() {
// (For the same reason as we did this check for "first" above.)
return cty.UnknownVal(retType), nil
}
argSet := arg.AsValueSet()
set = f(set, argSet)
}
return cty.SetValFromValueSet(set), nil
}
}

View File

@@ -0,0 +1,624 @@
package stdlib
import (
"fmt"
"regexp"
"sort"
"strings"
"github.com/apparentlymart/go-textseg/v13/textseg"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/gocty"
)
var UpperFunc = function.New(&function.Spec{
Description: "Returns the given string with all Unicode letters translated to their uppercase equivalents.",
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
in := args[0].AsString()
out := strings.ToUpper(in)
return cty.StringVal(out), nil
},
})
var LowerFunc = function.New(&function.Spec{
Description: "Returns the given string with all Unicode letters translated to their lowercase equivalents.",
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
in := args[0].AsString()
out := strings.ToLower(in)
return cty.StringVal(out), nil
},
})
var ReverseFunc = function.New(&function.Spec{
Description: "Returns the given string with all of its Unicode characters in reverse order.",
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
in := []byte(args[0].AsString())
out := make([]byte, len(in))
pos := len(out)
inB := []byte(in)
for i := 0; i < len(in); {
d, _, _ := textseg.ScanGraphemeClusters(inB[i:], true)
cluster := in[i : i+d]
pos -= len(cluster)
copy(out[pos:], cluster)
i += d
}
return cty.StringVal(string(out)), nil
},
})
var StrlenFunc = function.New(&function.Spec{
Description: "Returns the number of Unicode characters (technically: grapheme clusters) in the given string.",
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
AllowUnknown: true,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.Number),
RefineResult: func(b *cty.RefinementBuilder) *cty.RefinementBuilder {
// String length is never null and never negative.
// (We might refine the lower bound even more inside Impl.)
return b.NotNull().NumberRangeLowerBound(cty.NumberIntVal(0), true)
},
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
if !args[0].IsKnown() {
ret := cty.UnknownVal(cty.Number)
// We may be able to still return a constrained result based on the
// refined range of the unknown value.
inRng := args[0].Range()
if inRng.TypeConstraint() == cty.String {
prefixLen := int64(graphemeClusterCount(inRng.StringPrefix()))
ret = ret.Refine().NumberRangeLowerBound(cty.NumberIntVal(prefixLen), true).NewValue()
}
return ret, nil
}
in := args[0].AsString()
l := graphemeClusterCount(in)
return cty.NumberIntVal(int64(l)), nil
},
})
func graphemeClusterCount(in string) int {
l := 0
inB := []byte(in)
for i := 0; i < len(in); {
d, _, _ := textseg.ScanGraphemeClusters(inB[i:], true)
l++
i += d
}
return l
}
var SubstrFunc = function.New(&function.Spec{
Description: "Extracts a substring from the given string.",
Params: []function.Parameter{
{
Name: "str",
Description: "The input string.",
Type: cty.String,
AllowDynamicType: true,
},
{
Name: "offset",
Description: "The starting offset in Unicode characters.",
Type: cty.Number,
AllowDynamicType: true,
},
{
Name: "length",
Description: "The maximum length of the result in Unicode characters.",
Type: cty.Number,
AllowDynamicType: true,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
in := []byte(args[0].AsString())
var offset, length int
var err error
err = gocty.FromCtyValue(args[1], &offset)
if err != nil {
return cty.NilVal, err
}
err = gocty.FromCtyValue(args[2], &length)
if err != nil {
return cty.NilVal, err
}
if offset < 0 {
totalLenNum, err := Strlen(args[0])
if err != nil {
// should never happen
panic("Stdlen returned an error")
}
var totalLen int
err = gocty.FromCtyValue(totalLenNum, &totalLen)
if err != nil {
// should never happen
panic("Stdlen returned a non-int number")
}
offset += totalLen
} else if length == 0 {
// Short circuit here, after error checks, because if a
// string of length 0 has been requested it will always
// be the empty string
return cty.StringVal(""), nil
}
sub := in
pos := 0
var i int
// First we'll seek forward to our offset
if offset > 0 {
for i = 0; i < len(sub); {
d, _, _ := textseg.ScanGraphemeClusters(sub[i:], true)
i += d
pos++
if pos == offset {
break
}
if i >= len(in) {
return cty.StringVal(""), nil
}
}
sub = sub[i:]
}
if length < 0 {
// Taking the remainder of the string is a fast path since
// we can just return the rest of the buffer verbatim.
return cty.StringVal(string(sub)), nil
}
// Otherwise we need to start seeking forward again until we
// reach the length we want.
pos = 0
for i = 0; i < len(sub); {
d, _, _ := textseg.ScanGraphemeClusters(sub[i:], true)
i += d
pos++
if pos == length {
break
}
}
sub = sub[:i]
return cty.StringVal(string(sub)), nil
},
})
var JoinFunc = function.New(&function.Spec{
Description: "Concatenates together the elements of all given lists with a delimiter, producing a single string.",
Params: []function.Parameter{
{
Name: "separator",
Description: "Delimiter to insert between the given strings.",
Type: cty.String,
},
},
VarParam: &function.Parameter{
Name: "lists",
Description: "One or more lists of strings to join.",
Type: cty.List(cty.String),
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
sep := args[0].AsString()
listVals := args[1:]
if len(listVals) < 1 {
return cty.UnknownVal(cty.String), fmt.Errorf("at least one list is required")
}
l := 0
for _, list := range listVals {
if !list.IsWhollyKnown() {
return cty.UnknownVal(cty.String), nil
}
l += list.LengthInt()
}
items := make([]string, 0, l)
for ai, list := range listVals {
ei := 0
for it := list.ElementIterator(); it.Next(); {
_, val := it.Element()
if val.IsNull() {
if len(listVals) > 1 {
return cty.UnknownVal(cty.String), function.NewArgErrorf(ai+1, "element %d of list %d is null; cannot concatenate null values", ei, ai+1)
}
return cty.UnknownVal(cty.String), function.NewArgErrorf(ai+1, "element %d is null; cannot concatenate null values", ei)
}
items = append(items, val.AsString())
ei++
}
}
return cty.StringVal(strings.Join(items, sep)), nil
},
})
var SortFunc = function.New(&function.Spec{
Description: "Applies a lexicographic sort to the elements of the given list.",
Params: []function.Parameter{
{
Name: "list",
Type: cty.List(cty.String),
AllowUnknown: true,
},
},
Type: function.StaticReturnType(cty.List(cty.String)),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
listVal := args[0]
if !listVal.IsWhollyKnown() {
// If some of the element values aren't known yet then we
// can't yet predict the order of the result, but we can be
// sure that the length won't change.
ret := cty.UnknownVal(retType)
if listVal.Type().IsListType() {
rng := listVal.Range()
ret = ret.Refine().
CollectionLengthLowerBound(rng.LengthLowerBound()).
CollectionLengthUpperBound(rng.LengthUpperBound()).
NewValue()
}
return ret, nil
}
if listVal.LengthInt() == 0 { // Easy path
return listVal, nil
}
list := make([]string, 0, listVal.LengthInt())
for it := listVal.ElementIterator(); it.Next(); {
iv, v := it.Element()
if v.IsNull() {
return cty.UnknownVal(retType), fmt.Errorf("given list element %s is null; a null string cannot be sorted", iv.AsBigFloat().String())
}
list = append(list, v.AsString())
}
sort.Strings(list)
retVals := make([]cty.Value, len(list))
for i, s := range list {
retVals[i] = cty.StringVal(s)
}
return cty.ListVal(retVals), nil
},
})
var SplitFunc = function.New(&function.Spec{
Description: "Produces a list of one or more strings by splitting the given string at all instances of a given separator substring.",
Params: []function.Parameter{
{
Name: "separator",
Description: "The substring that delimits the result strings.",
Type: cty.String,
},
{
Name: "str",
Description: "The string to split.",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.List(cty.String)),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
sep := args[0].AsString()
str := args[1].AsString()
elems := strings.Split(str, sep)
elemVals := make([]cty.Value, len(elems))
for i, s := range elems {
elemVals[i] = cty.StringVal(s)
}
if len(elemVals) == 0 {
return cty.ListValEmpty(cty.String), nil
}
return cty.ListVal(elemVals), nil
},
})
// ChompFunc is a function that removes newline characters at the end of a
// string.
var ChompFunc = function.New(&function.Spec{
Description: "Removes one or more newline characters from the end of the given string.",
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
newlines := regexp.MustCompile(`(?:\r\n?|\n)*\z`)
return cty.StringVal(newlines.ReplaceAllString(args[0].AsString(), "")), nil
},
})
// IndentFunc is a function that adds a given number of spaces to the
// beginnings of all but the first line in a given multi-line string.
var IndentFunc = function.New(&function.Spec{
Description: "Adds a given number of spaces after each newline character in the given string.",
Params: []function.Parameter{
{
Name: "spaces",
Description: "Number of spaces to add after each newline character.",
Type: cty.Number,
},
{
Name: "str",
Description: "The string to transform.",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
var spaces int
if err := gocty.FromCtyValue(args[0], &spaces); err != nil {
return cty.UnknownVal(cty.String), err
}
data := args[1].AsString()
pad := strings.Repeat(" ", spaces)
return cty.StringVal(strings.Replace(data, "\n", "\n"+pad, -1)), nil
},
})
// TitleFunc is a function that converts the first letter of each word in the
// given string to uppercase.
var TitleFunc = function.New(&function.Spec{
Description: "Replaces one letter after each non-letter and non-digit character with its uppercase equivalent.",
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return cty.StringVal(strings.Title(args[0].AsString())), nil
},
})
// TrimSpaceFunc is a function that removes any space characters from the start
// and end of the given string.
var TrimSpaceFunc = function.New(&function.Spec{
Description: "Removes any consecutive space characters (as defined by Unicode) from the start and end of the given string.",
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
return cty.StringVal(strings.TrimSpace(args[0].AsString())), nil
},
})
// TrimFunc is a function that removes the specified characters from the start
// and end of the given string.
var TrimFunc = function.New(&function.Spec{
Description: "Removes consecutive sequences of characters in \"cutset\" from the start and end of the given string.",
Params: []function.Parameter{
{
Name: "str",
Description: "The string to trim.",
Type: cty.String,
},
{
Name: "cutset",
Description: "A string containing all of the characters to trim. Each character is taken separately, so the order of characters is insignificant.",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
str := args[0].AsString()
cutset := args[1].AsString()
// NOTE: This doesn't properly handle any character that is encoded
// with multiple sequential code units, such as letters with
// combining diacritics and emoji modifier sequences.
return cty.StringVal(strings.Trim(str, cutset)), nil
},
})
// TrimPrefixFunc is a function that removes the specified characters from the
// start the given string.
var TrimPrefixFunc = function.New(&function.Spec{
Description: "Removes the given prefix from the start of the given string, if present.",
Params: []function.Parameter{
{
Name: "str",
Description: "The string to trim.",
Type: cty.String,
},
{
Name: "prefix",
Description: "The prefix to remove, if present.",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
str := args[0].AsString()
prefix := args[1].AsString()
return cty.StringVal(strings.TrimPrefix(str, prefix)), nil
},
})
// TrimSuffixFunc is a function that removes the specified characters from the
// end of the given string.
var TrimSuffixFunc = function.New(&function.Spec{
Description: "Removes the given suffix from the start of the given string, if present.",
Params: []function.Parameter{
{
Name: "str",
Description: "The string to trim.",
Type: cty.String,
},
{
Name: "suffix",
Description: "The suffix to remove, if present.",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
str := args[0].AsString()
cutset := args[1].AsString()
return cty.StringVal(strings.TrimSuffix(str, cutset)), nil
},
})
// Upper is a Function that converts a given string to uppercase.
func Upper(str cty.Value) (cty.Value, error) {
return UpperFunc.Call([]cty.Value{str})
}
// Lower is a Function that converts a given string to lowercase.
func Lower(str cty.Value) (cty.Value, error) {
return LowerFunc.Call([]cty.Value{str})
}
// Reverse is a Function that reverses the order of the characters in the
// given string.
//
// As usual, "character" for the sake of this function is a grapheme cluster,
// so combining diacritics (for example) will be considered together as a
// single character.
func Reverse(str cty.Value) (cty.Value, error) {
return ReverseFunc.Call([]cty.Value{str})
}
// Strlen is a Function that returns the length of the given string in
// characters.
//
// As usual, "character" for the sake of this function is a grapheme cluster,
// so combining diacritics (for example) will be considered together as a
// single character.
func Strlen(str cty.Value) (cty.Value, error) {
return StrlenFunc.Call([]cty.Value{str})
}
// Substr is a Function that extracts a sequence of characters from another
// string and creates a new string.
//
// As usual, "character" for the sake of this function is a grapheme cluster,
// so combining diacritics (for example) will be considered together as a
// single character.
//
// The "offset" index may be negative, in which case it is relative to the
// end of the given string.
//
// The "length" may be -1, in which case the remainder of the string after
// the given offset will be returned.
func Substr(str cty.Value, offset cty.Value, length cty.Value) (cty.Value, error) {
return SubstrFunc.Call([]cty.Value{str, offset, length})
}
// Join concatenates together the string elements of one or more lists with a
// given separator.
func Join(sep cty.Value, lists ...cty.Value) (cty.Value, error) {
args := make([]cty.Value, len(lists)+1)
args[0] = sep
copy(args[1:], lists)
return JoinFunc.Call(args)
}
// Sort re-orders the elements of a given list of strings so that they are
// in ascending lexicographical order.
func Sort(list cty.Value) (cty.Value, error) {
return SortFunc.Call([]cty.Value{list})
}
// Split divides a given string by a given separator, returning a list of
// strings containing the characters between the separator sequences.
func Split(sep, str cty.Value) (cty.Value, error) {
return SplitFunc.Call([]cty.Value{sep, str})
}
// Chomp removes newline characters at the end of a string.
func Chomp(str cty.Value) (cty.Value, error) {
return ChompFunc.Call([]cty.Value{str})
}
// Indent adds a given number of spaces to the beginnings of all but the first
// line in a given multi-line string.
func Indent(spaces, str cty.Value) (cty.Value, error) {
return IndentFunc.Call([]cty.Value{spaces, str})
}
// Title converts the first letter of each word in the given string to uppercase.
func Title(str cty.Value) (cty.Value, error) {
return TitleFunc.Call([]cty.Value{str})
}
// TrimSpace removes any space characters from the start and end of the given string.
func TrimSpace(str cty.Value) (cty.Value, error) {
return TrimSpaceFunc.Call([]cty.Value{str})
}
// Trim removes the specified characters from the start and end of the given string.
func Trim(str, cutset cty.Value) (cty.Value, error) {
return TrimFunc.Call([]cty.Value{str, cutset})
}
// TrimPrefix removes the specified prefix from the start of the given string.
func TrimPrefix(str, prefix cty.Value) (cty.Value, error) {
return TrimPrefixFunc.Call([]cty.Value{str, prefix})
}
// TrimSuffix removes the specified suffix from the end of the given string.
func TrimSuffix(str, suffix cty.Value) (cty.Value, error) {
return TrimSuffixFunc.Call([]cty.Value{str, suffix})
}

View File

@@ -0,0 +1,87 @@
package stdlib
import (
"regexp"
"strings"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
// ReplaceFunc is a function that searches a given string for another given
// substring, and replaces each occurence with a given replacement string.
// The substr argument is a simple string.
var ReplaceFunc = function.New(&function.Spec{
Description: `Replaces all instances of the given substring in the given string with the given replacement string.`,
Params: []function.Parameter{
{
Name: "str",
Description: `The string to search within.`,
Type: cty.String,
},
{
Name: "substr",
Description: `The substring to search for.`,
Type: cty.String,
},
{
Name: "replace",
Description: `The new substring to replace substr with.`,
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
str := args[0].AsString()
substr := args[1].AsString()
replace := args[2].AsString()
return cty.StringVal(strings.Replace(str, substr, replace, -1)), nil
},
})
// RegexReplaceFunc is a function that searches a given string for another
// given substring, and replaces each occurence with a given replacement
// string. The substr argument must be a valid regular expression.
var RegexReplaceFunc = function.New(&function.Spec{
Description: `Applies the given regular expression pattern to the given string and replaces all matches with the given replacement string.`,
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
{
Name: "pattern",
Type: cty.String,
},
{
Name: "replace",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
RefineResult: refineNonNull,
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
str := args[0].AsString()
substr := args[1].AsString()
replace := args[2].AsString()
re, err := regexp.Compile(substr)
if err != nil {
return cty.UnknownVal(cty.String), err
}
return cty.StringVal(re.ReplaceAllString(str, replace)), nil
},
})
// Replace searches a given string for another given substring,
// and replaces all occurrences with a given replacement string.
func Replace(str, substr, replace cty.Value) (cty.Value, error) {
return ReplaceFunc.Call([]cty.Value{str, substr, replace})
}
func RegexReplace(str, substr, replace cty.Value) (cty.Value, error) {
return RegexReplaceFunc.Call([]cty.Value{str, substr, replace})
}

View File

@@ -0,0 +1,31 @@
package function
import (
"github.com/zclconf/go-cty/cty"
)
// Unpredictable wraps a given function such that it retains the same arguments
// and type checking behavior but will return an unknown value when called.
//
// It is recommended that most functions be "pure", which is to say that they
// will always produce the same value given particular input. However,
// sometimes it is necessary to offer functions whose behavior depends on
// some external state, such as reading a file or determining the current time.
// In such cases, an unpredictable wrapper might be used to stand in for
// the function during some sort of prior "checking" phase in order to delay
// the actual effect until later.
//
// While Unpredictable can support a function that isn't pure in its
// implementation, it still expects a function to be pure in its type checking
// behavior, except for the special case of returning cty.DynamicPseudoType
// if it is not yet able to predict its return value based on current argument
// information.
func Unpredictable(f Function) Function {
newSpec := *f.spec // shallow copy
newSpec.Impl = unpredictableImpl
return New(&newSpec)
}
func unpredictableImpl(args []cty.Value, retType cty.Type) (cty.Value, error) {
return cty.UnknownVal(retType), nil
}

7
vendor/github.com/zclconf/go-cty/cty/gocty/doc.go generated vendored Normal file
View File

@@ -0,0 +1,7 @@
// Package gocty deals with converting between cty Values and native go
// values.
//
// It operates under a similar principle to the encoding/json and
// encoding/xml packages in the standard library, using reflection to
// populate native Go data structures from cty values and vice-versa.
package gocty

43
vendor/github.com/zclconf/go-cty/cty/gocty/helpers.go generated vendored Normal file
View File

@@ -0,0 +1,43 @@
package gocty
import (
"math/big"
"reflect"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/set"
)
var valueType = reflect.TypeOf(cty.Value{})
var typeType = reflect.TypeOf(cty.Type{})
var setType = reflect.TypeOf(set.Set[interface{}]{})
var bigFloatType = reflect.TypeOf(big.Float{})
var bigIntType = reflect.TypeOf(big.Int{})
var emptyInterfaceType = reflect.TypeOf(interface{}(nil))
var stringType = reflect.TypeOf("")
// structTagIndices interrogates the fields of the given type (which must
// be a struct type, or we'll panic) and returns a map from the cty
// attribute names declared via struct tags to the indices of the
// fields holding those tags.
//
// This function will panic if two fields within the struct are tagged with
// the same cty attribute name.
func structTagIndices(st reflect.Type) map[string]int {
ct := st.NumField()
ret := make(map[string]int, ct)
for i := 0; i < ct; i++ {
field := st.Field(i)
attrName := field.Tag.Get("cty")
if attrName != "" {
ret[attrName] = i
}
}
return ret
}

548
vendor/github.com/zclconf/go-cty/cty/gocty/in.go generated vendored Normal file
View File

@@ -0,0 +1,548 @@
package gocty
import (
"math/big"
"reflect"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/set"
)
// ToCtyValue produces a cty.Value from a Go value. The result will conform
// to the given type, or an error will be returned if this is not possible.
//
// The target type serves as a hint to resolve ambiguities in the mapping.
// For example, the Go type set.Set tells us that the value is a set but
// does not describe the set's element type. This also allows for convenient
// conversions, such as populating a set from a slice rather than having to
// first explicitly instantiate a set.Set.
//
// The audience of this function is assumed to be the developers of Go code
// that is integrating with cty, and thus the error messages it returns are
// presented from Go's perspective. These messages are thus not appropriate
// for display to end-users. An error returned from ToCtyValue represents a
// bug in the calling program, not user error.
func ToCtyValue(val interface{}, ty cty.Type) (cty.Value, error) {
// 'path' starts off as empty but will grow for each level of recursive
// call we make, so by the time toCtyValue returns it is likely to have
// unused capacity on the end of it, depending on how deeply-recursive
// the given Type is.
path := make(cty.Path, 0)
return toCtyValue(reflect.ValueOf(val), ty, path)
}
func toCtyValue(val reflect.Value, ty cty.Type, path cty.Path) (cty.Value, error) {
if val != (reflect.Value{}) && val.Type().AssignableTo(valueType) {
// If the source value is a cty.Value then we'll try to just pass
// through to the target type directly.
return toCtyPassthrough(val, ty, path)
}
switch ty {
case cty.Bool:
return toCtyBool(val, path)
case cty.Number:
return toCtyNumber(val, path)
case cty.String:
return toCtyString(val, path)
case cty.DynamicPseudoType:
return toCtyDynamic(val, path)
}
switch {
case ty.IsListType():
return toCtyList(val, ty.ElementType(), path)
case ty.IsMapType():
return toCtyMap(val, ty.ElementType(), path)
case ty.IsSetType():
return toCtySet(val, ty.ElementType(), path)
case ty.IsObjectType():
return toCtyObject(val, ty.AttributeTypes(), path)
case ty.IsTupleType():
return toCtyTuple(val, ty.TupleElementTypes(), path)
case ty.IsCapsuleType():
return toCtyCapsule(val, ty, path)
}
// We should never fall out here
return cty.NilVal, path.NewErrorf("unsupported target type %#v", ty)
}
func toCtyBool(val reflect.Value, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.Bool), nil
}
switch val.Kind() {
case reflect.Bool:
return cty.BoolVal(val.Bool()), nil
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s to bool", val.Kind())
}
}
func toCtyNumber(val reflect.Value, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.Number), nil
}
switch val.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return cty.NumberIntVal(val.Int()), nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return cty.NumberUIntVal(val.Uint()), nil
case reflect.Float32, reflect.Float64:
return cty.NumberFloatVal(val.Float()), nil
case reflect.Struct:
if val.Type().AssignableTo(bigIntType) {
bigInt := val.Interface().(big.Int)
bigFloat := (&big.Float{}).SetInt(&bigInt)
val = reflect.ValueOf(*bigFloat)
}
if val.Type().AssignableTo(bigFloatType) {
bigFloat := val.Interface().(big.Float)
return cty.NumberVal(&bigFloat), nil
}
fallthrough
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s to number", val.Kind())
}
}
func toCtyString(val reflect.Value, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.String), nil
}
switch val.Kind() {
case reflect.String:
return cty.StringVal(val.String()), nil
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s to string", val.Kind())
}
}
func toCtyList(val reflect.Value, ety cty.Type, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.List(ety)), nil
}
switch val.Kind() {
case reflect.Slice:
if val.IsNil() {
return cty.NullVal(cty.List(ety)), nil
}
fallthrough
case reflect.Array:
if val.Len() == 0 {
return cty.ListValEmpty(ety), nil
}
// While we work on our elements we'll temporarily grow
// path to give us a place to put our index step.
path = append(path, cty.PathStep(nil))
vals := make([]cty.Value, val.Len())
for i := range vals {
var err error
path[len(path)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
vals[i], err = toCtyValue(val.Index(i), ety, path)
if err != nil {
return cty.NilVal, err
}
}
// Discard our extra path segment, retaining it as extra capacity
// for future appending to the path.
path = path[:len(path)-1]
return cty.ListVal(vals), nil
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s to %#v", val.Kind(), cty.List(ety))
}
}
func toCtyMap(val reflect.Value, ety cty.Type, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.Map(ety)), nil
}
switch val.Kind() {
case reflect.Map:
if val.IsNil() {
return cty.NullVal(cty.Map(ety)), nil
}
if val.Len() == 0 {
return cty.MapValEmpty(ety), nil
}
keyType := val.Type().Key()
if keyType.Kind() != reflect.String {
return cty.NilVal, path.NewErrorf("can't convert Go map with key type %s; key type must be string", keyType)
}
// While we work on our elements we'll temporarily grow
// path to give us a place to put our index step.
path = append(path, cty.PathStep(nil))
vals := make(map[string]cty.Value, val.Len())
for _, kv := range val.MapKeys() {
k := kv.String()
var err error
path[len(path)-1] = cty.IndexStep{
Key: cty.StringVal(k),
}
vals[k], err = toCtyValue(val.MapIndex(reflect.ValueOf(k)), ety, path)
if err != nil {
return cty.NilVal, err
}
}
// Discard our extra path segment, retaining it as extra capacity
// for future appending to the path.
path = path[:len(path)-1]
return cty.MapVal(vals), nil
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s to %#v", val.Kind(), cty.Map(ety))
}
}
func toCtySet(val reflect.Value, ety cty.Type, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.Set(ety)), nil
}
var vals []cty.Value
switch val.Kind() {
case reflect.Slice:
if val.IsNil() {
return cty.NullVal(cty.Set(ety)), nil
}
fallthrough
case reflect.Array:
if val.Len() == 0 {
return cty.SetValEmpty(ety), nil
}
vals = make([]cty.Value, val.Len())
for i := range vals {
var err error
vals[i], err = toCtyValue(val.Index(i), ety, path)
if err != nil {
return cty.NilVal, err
}
}
case reflect.Struct:
if !val.Type().AssignableTo(setType) {
return cty.NilVal, path.NewErrorf("can't convert Go %s to %#v", val.Type(), cty.Set(ety))
}
rawSet := val.Interface().(set.Set[interface{}])
inVals := rawSet.Values()
if len(inVals) == 0 {
return cty.SetValEmpty(ety), nil
}
vals = make([]cty.Value, len(inVals))
for i := range inVals {
var err error
vals[i], err = toCtyValue(reflect.ValueOf(inVals[i]), ety, path)
if err != nil {
return cty.NilVal, err
}
}
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s to %#v", val.Kind(), cty.Set(ety))
}
return cty.SetVal(vals), nil
}
func toCtyObject(val reflect.Value, attrTypes map[string]cty.Type, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.Object(attrTypes)), nil
}
switch val.Kind() {
case reflect.Map:
if val.IsNil() {
return cty.NullVal(cty.Object(attrTypes)), nil
}
keyType := val.Type().Key()
if keyType.Kind() != reflect.String {
return cty.NilVal, path.NewErrorf("can't convert Go map with key type %s; key type must be string", keyType)
}
if len(attrTypes) == 0 {
return cty.EmptyObjectVal, nil
}
// While we work on our elements we'll temporarily grow
// path to give us a place to put our GetAttr step.
path = append(path, cty.PathStep(nil))
haveKeys := make(map[string]struct{}, val.Len())
for _, kv := range val.MapKeys() {
haveKeys[kv.String()] = struct{}{}
}
vals := make(map[string]cty.Value, len(attrTypes))
for k, at := range attrTypes {
var err error
path[len(path)-1] = cty.GetAttrStep{
Name: k,
}
if _, have := haveKeys[k]; !have {
vals[k] = cty.NullVal(at)
continue
}
vals[k], err = toCtyValue(val.MapIndex(reflect.ValueOf(k)), at, path)
if err != nil {
return cty.NilVal, err
}
}
// Discard our extra path segment, retaining it as extra capacity
// for future appending to the path.
path = path[:len(path)-1]
return cty.ObjectVal(vals), nil
case reflect.Struct:
if len(attrTypes) == 0 {
return cty.EmptyObjectVal, nil
}
// While we work on our elements we'll temporarily grow
// path to give us a place to put our GetAttr step.
path = append(path, cty.PathStep(nil))
attrFields := structTagIndices(val.Type())
vals := make(map[string]cty.Value, len(attrTypes))
for k, at := range attrTypes {
path[len(path)-1] = cty.GetAttrStep{
Name: k,
}
if fieldIdx, have := attrFields[k]; have {
var err error
vals[k], err = toCtyValue(val.Field(fieldIdx), at, path)
if err != nil {
return cty.NilVal, err
}
} else {
vals[k] = cty.NullVal(at)
}
}
// Discard our extra path segment, retaining it as extra capacity
// for future appending to the path.
path = path[:len(path)-1]
return cty.ObjectVal(vals), nil
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s to %#v", val.Kind(), cty.Object(attrTypes))
}
}
func toCtyTuple(val reflect.Value, elemTypes []cty.Type, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.Tuple(elemTypes)), nil
}
switch val.Kind() {
case reflect.Slice:
if val.IsNil() {
return cty.NullVal(cty.Tuple(elemTypes)), nil
}
if val.Len() != len(elemTypes) {
return cty.NilVal, path.NewErrorf("wrong number of elements %d; need %d", val.Len(), len(elemTypes))
}
if len(elemTypes) == 0 {
return cty.EmptyTupleVal, nil
}
// While we work on our elements we'll temporarily grow
// path to give us a place to put our Index step.
path = append(path, cty.PathStep(nil))
vals := make([]cty.Value, len(elemTypes))
for i, ety := range elemTypes {
var err error
path[len(path)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
vals[i], err = toCtyValue(val.Index(i), ety, path)
if err != nil {
return cty.NilVal, err
}
}
// Discard our extra path segment, retaining it as extra capacity
// for future appending to the path.
path = path[:len(path)-1]
return cty.TupleVal(vals), nil
case reflect.Struct:
fieldCount := val.Type().NumField()
if fieldCount != len(elemTypes) {
return cty.NilVal, path.NewErrorf("wrong number of struct fields %d; need %d", fieldCount, len(elemTypes))
}
if len(elemTypes) == 0 {
return cty.EmptyTupleVal, nil
}
// While we work on our elements we'll temporarily grow
// path to give us a place to put our Index step.
path = append(path, cty.PathStep(nil))
vals := make([]cty.Value, len(elemTypes))
for i, ety := range elemTypes {
var err error
path[len(path)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
vals[i], err = toCtyValue(val.Field(i), ety, path)
if err != nil {
return cty.NilVal, err
}
}
// Discard our extra path segment, retaining it as extra capacity
// for future appending to the path.
path = path[:len(path)-1]
return cty.TupleVal(vals), nil
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s to %#v", val.Kind(), cty.Tuple(elemTypes))
}
}
func toCtyCapsule(val reflect.Value, capsuleType cty.Type, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(capsuleType), nil
}
if val.Kind() != reflect.Ptr {
if !val.CanAddr() {
return cty.NilVal, path.NewErrorf("source value for capsule %#v must be addressable", capsuleType)
}
val = val.Addr()
}
if !val.Type().Elem().AssignableTo(capsuleType.EncapsulatedType()) {
return cty.NilVal, path.NewErrorf("value of type %T not compatible with capsule %#v", val.Interface(), capsuleType)
}
return cty.CapsuleVal(capsuleType, val.Interface()), nil
}
func toCtyDynamic(val reflect.Value, path cty.Path) (cty.Value, error) {
if val = toCtyUnwrapPointer(val); !val.IsValid() {
return cty.NullVal(cty.DynamicPseudoType), nil
}
switch val.Kind() {
case reflect.Struct:
if !val.Type().AssignableTo(valueType) {
return cty.NilVal, path.NewErrorf("can't convert Go %s dynamically; only cty.Value allowed", val.Type())
}
return val.Interface().(cty.Value), nil
default:
return cty.NilVal, path.NewErrorf("can't convert Go %s dynamically; only cty.Value allowed", val.Kind())
}
}
func toCtyPassthrough(wrappedVal reflect.Value, wantTy cty.Type, path cty.Path) (cty.Value, error) {
if wrappedVal = toCtyUnwrapPointer(wrappedVal); !wrappedVal.IsValid() {
return cty.NullVal(wantTy), nil
}
givenVal := wrappedVal.Interface().(cty.Value)
val, err := convert.Convert(givenVal, wantTy)
if err != nil {
return cty.NilVal, path.NewErrorf("unsuitable value: %s", err)
}
return val, nil
}
// toCtyUnwrapPointer is a helper for dealing with Go pointers. It has three
// possible outcomes:
//
// - Given value isn't a pointer, so it's just returned as-is.
// - Given value is a non-nil pointer, in which case it is dereferenced
// and the result returned.
// - Given value is a nil pointer, in which case an invalid value is returned.
//
// For nested pointer types, like **int, they are all dereferenced in turn
// until a non-pointer value is found, or until a nil pointer is encountered.
func toCtyUnwrapPointer(val reflect.Value) reflect.Value {
for val.Kind() == reflect.Ptr || val.Kind() == reflect.Interface {
if val.IsNil() {
return reflect.Value{}
}
val = val.Elem()
}
return val
}

686
vendor/github.com/zclconf/go-cty/cty/gocty/out.go generated vendored Normal file
View File

@@ -0,0 +1,686 @@
package gocty
import (
"math"
"math/big"
"reflect"
"github.com/zclconf/go-cty/cty"
)
// FromCtyValue assigns a cty.Value to a reflect.Value, which must be a pointer,
// using a fixed set of conversion rules.
//
// This function considers its audience to be the creator of the cty Value
// given, and thus the error messages it generates are (unlike with ToCtyValue)
// presented in cty terminology that is generally appropriate to return to
// end-users in applications where cty data structures are built from
// user-provided configuration. In particular this means that if incorrect
// target types are provided by the calling application the resulting error
// messages are likely to be confusing, since we assume that the given target
// type is correct and the cty.Value is where the error lies.
//
// If an error is returned, the target data structure may have been partially
// populated, but the degree to which this is true is an implementation
// detail that the calling application should not rely on.
//
// The function will panic if given a non-pointer as the Go value target,
// since that is considered to be a bug in the calling program.
func FromCtyValue(val cty.Value, target interface{}) error {
tVal := reflect.ValueOf(target)
if tVal.Kind() != reflect.Ptr {
panic("target value is not a pointer")
}
if tVal.IsNil() {
panic("target value is nil pointer")
}
// 'path' starts off as empty but will grow for each level of recursive
// call we make, so by the time fromCtyValue returns it is likely to have
// unused capacity on the end of it, depending on how deeply-recursive
// the given cty.Value is.
path := make(cty.Path, 0)
return fromCtyValue(val, tVal, path)
}
func fromCtyValue(val cty.Value, target reflect.Value, path cty.Path) error {
ty := val.Type()
deepTarget := fromCtyPopulatePtr(target, false)
// If we're decoding into a cty.Value then we just pass through the
// value as-is, to enable partial decoding. This is the only situation
// where unknown values are permitted.
if deepTarget.Kind() == reflect.Struct && deepTarget.Type().AssignableTo(valueType) {
deepTarget.Set(reflect.ValueOf(val))
return nil
}
// Lists and maps can be nil without indirection, but everything else
// requires a pointer and we set it immediately to nil.
// We also make an exception for capsule types because we want to handle
// pointers specially for these.
// (fromCtyList and fromCtyMap must therefore deal with val.IsNull, while
// other types can assume no nulls after this point.)
if val.IsNull() && !val.Type().IsListType() && !val.Type().IsMapType() && !val.Type().IsCapsuleType() {
target = fromCtyPopulatePtr(target, true)
if target.Kind() != reflect.Ptr {
return path.NewErrorf("null value is not allowed")
}
target.Set(reflect.Zero(target.Type()))
return nil
}
target = deepTarget
if !val.IsKnown() {
return path.NewErrorf("value must be known")
}
switch ty {
case cty.Bool:
return fromCtyBool(val, target, path)
case cty.Number:
return fromCtyNumber(val, target, path)
case cty.String:
return fromCtyString(val, target, path)
}
switch {
case ty.IsListType():
return fromCtyList(val, target, path)
case ty.IsMapType():
return fromCtyMap(val, target, path)
case ty.IsSetType():
return fromCtySet(val, target, path)
case ty.IsObjectType():
return fromCtyObject(val, target, path)
case ty.IsTupleType():
return fromCtyTuple(val, target, path)
case ty.IsCapsuleType():
return fromCtyCapsule(val, target, path)
}
// We should never fall out here; reaching here indicates a bug in this
// function.
return path.NewErrorf("unsupported source type %#v", ty)
}
func fromCtyBool(val cty.Value, target reflect.Value, path cty.Path) error {
switch target.Kind() {
case reflect.Bool:
target.SetBool(val.True())
return nil
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtyNumber(val cty.Value, target reflect.Value, path cty.Path) error {
bf := val.AsBigFloat()
switch target.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return fromCtyNumberInt(bf, target, path)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return fromCtyNumberUInt(bf, target, path)
case reflect.Float32, reflect.Float64:
return fromCtyNumberFloat(bf, target, path)
case reflect.Struct:
return fromCtyNumberBig(bf, target, path)
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtyNumberInt(bf *big.Float, target reflect.Value, path cty.Path) error {
// Doing this with switch rather than << arithmetic because << with
// result >32-bits is not portable to 32-bit systems.
var min int64
var max int64
switch target.Type().Bits() {
case 8:
min = math.MinInt8
max = math.MaxInt8
case 16:
min = math.MinInt16
max = math.MaxInt16
case 32:
min = math.MinInt32
max = math.MaxInt32
case 64:
min = math.MinInt64
max = math.MaxInt64
default:
panic("weird number of bits in target int")
}
iv, accuracy := bf.Int64()
if accuracy != big.Exact || iv < min || iv > max {
return path.NewErrorf("value must be a whole number, between %d and %d", min, max)
}
target.SetInt(iv)
return nil
}
func fromCtyNumberUInt(bf *big.Float, target reflect.Value, path cty.Path) error {
// Doing this with switch rather than << arithmetic because << with
// result >32-bits is not portable to 32-bit systems.
var max uint64
switch target.Type().Bits() {
case 8:
max = math.MaxUint8
case 16:
max = math.MaxUint16
case 32:
max = math.MaxUint32
case 64:
max = math.MaxUint64
default:
panic("weird number of bits in target uint")
}
iv, accuracy := bf.Uint64()
if accuracy != big.Exact || iv > max {
return path.NewErrorf("value must be a whole number, between 0 and %d inclusive", max)
}
target.SetUint(iv)
return nil
}
func fromCtyNumberFloat(bf *big.Float, target reflect.Value, path cty.Path) error {
switch target.Kind() {
case reflect.Float32, reflect.Float64:
fv, accuracy := bf.Float64()
if accuracy != big.Exact {
// We allow the precision to be truncated as part of our conversion,
// but we don't want to silently introduce infinities.
if math.IsInf(fv, 0) {
return path.NewErrorf("value must be between %f and %f inclusive", -math.MaxFloat64, math.MaxFloat64)
}
}
target.SetFloat(fv)
return nil
default:
panic("unsupported kind of float")
}
}
func fromCtyNumberBig(bf *big.Float, target reflect.Value, path cty.Path) error {
switch {
case bigFloatType.ConvertibleTo(target.Type()):
// Easy!
target.Set(reflect.ValueOf(bf).Elem().Convert(target.Type()))
return nil
case bigIntType.ConvertibleTo(target.Type()):
bi, accuracy := bf.Int(nil)
if accuracy != big.Exact {
return path.NewErrorf("value must be a whole number")
}
target.Set(reflect.ValueOf(bi).Elem().Convert(target.Type()))
return nil
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtyString(val cty.Value, target reflect.Value, path cty.Path) error {
switch target.Kind() {
case reflect.String:
target.SetString(val.AsString())
return nil
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtyList(val cty.Value, target reflect.Value, path cty.Path) error {
switch target.Kind() {
case reflect.Slice:
if val.IsNull() {
target.Set(reflect.Zero(target.Type()))
return nil
}
length := val.LengthInt()
tv := reflect.MakeSlice(target.Type(), length, length)
path = append(path, nil)
i := 0
var err error
val.ForEachElement(func(key cty.Value, val cty.Value) bool {
path[len(path)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
targetElem := tv.Index(i)
err = fromCtyValue(val, targetElem, path)
if err != nil {
return true
}
i++
return false
})
if err != nil {
return err
}
path = path[:len(path)-1]
target.Set(tv)
return nil
case reflect.Array:
if val.IsNull() {
return path.NewErrorf("null value is not allowed")
}
length := val.LengthInt()
if length != target.Len() {
return path.NewErrorf("must be a list of length %d", target.Len())
}
path = append(path, nil)
i := 0
var err error
val.ForEachElement(func(key cty.Value, val cty.Value) bool {
path[len(path)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
targetElem := target.Index(i)
err = fromCtyValue(val, targetElem, path)
if err != nil {
return true
}
i++
return false
})
if err != nil {
return err
}
path = path[:len(path)-1]
return nil
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtyMap(val cty.Value, target reflect.Value, path cty.Path) error {
switch target.Kind() {
case reflect.Map:
if val.IsNull() {
target.Set(reflect.Zero(target.Type()))
return nil
}
tv := reflect.MakeMap(target.Type())
et := target.Type().Elem()
path = append(path, nil)
var err error
val.ForEachElement(func(key cty.Value, val cty.Value) bool {
path[len(path)-1] = cty.IndexStep{
Key: key,
}
ks := key.AsString()
targetElem := reflect.New(et)
err = fromCtyValue(val, targetElem, path)
tv.SetMapIndex(reflect.ValueOf(ks), targetElem.Elem())
return err != nil
})
if err != nil {
return err
}
path = path[:len(path)-1]
target.Set(tv)
return nil
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtySet(val cty.Value, target reflect.Value, path cty.Path) error {
switch target.Kind() {
case reflect.Slice:
if val.IsNull() {
target.Set(reflect.Zero(target.Type()))
return nil
}
length := val.LengthInt()
tv := reflect.MakeSlice(target.Type(), length, length)
i := 0
var err error
val.ForEachElement(func(key cty.Value, val cty.Value) bool {
targetElem := tv.Index(i)
err = fromCtyValue(val, targetElem, path)
if err != nil {
return true
}
i++
return false
})
if err != nil {
return err
}
target.Set(tv)
return nil
case reflect.Array:
if val.IsNull() {
return path.NewErrorf("null value is not allowed")
}
length := val.LengthInt()
if length != target.Len() {
return path.NewErrorf("must be a set of length %d", target.Len())
}
i := 0
var err error
val.ForEachElement(func(key cty.Value, val cty.Value) bool {
targetElem := target.Index(i)
err = fromCtyValue(val, targetElem, path)
if err != nil {
return true
}
i++
return false
})
if err != nil {
return err
}
return nil
// TODO: decode into set.Set instance
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtyObject(val cty.Value, target reflect.Value, path cty.Path) error {
switch target.Kind() {
case reflect.Struct:
attrTypes := val.Type().AttributeTypes()
targetFields := structTagIndices(target.Type())
path = append(path, nil)
for k, i := range targetFields {
if _, exists := attrTypes[k]; !exists {
// If the field in question isn't able to represent nil,
// that's an error.
fk := target.Field(i).Kind()
switch fk {
case reflect.Ptr, reflect.Slice, reflect.Map, reflect.Interface:
// okay
default:
return path.NewErrorf("missing required attribute %q", k)
}
}
}
for k := range attrTypes {
path[len(path)-1] = cty.GetAttrStep{
Name: k,
}
fieldIdx, exists := targetFields[k]
if !exists {
return path.NewErrorf("unsupported attribute %q", k)
}
ev := val.GetAttr(k)
targetField := target.Field(fieldIdx)
err := fromCtyValue(ev, targetField, path)
if err != nil {
return err
}
}
path = path[:len(path)-1]
return nil
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtyTuple(val cty.Value, target reflect.Value, path cty.Path) error {
switch target.Kind() {
case reflect.Struct:
elemTypes := val.Type().TupleElementTypes()
fieldCount := target.Type().NumField()
if fieldCount != len(elemTypes) {
return path.NewErrorf("a tuple of %d elements is required", fieldCount)
}
path = append(path, nil)
for i := range elemTypes {
path[len(path)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
ev := val.Index(cty.NumberIntVal(int64(i)))
targetField := target.Field(i)
err := fromCtyValue(ev, targetField, path)
if err != nil {
return err
}
}
path = path[:len(path)-1]
return nil
default:
return likelyRequiredTypesError(path, target)
}
}
func fromCtyCapsule(val cty.Value, target reflect.Value, path cty.Path) error {
if target.Kind() == reflect.Ptr {
// Walk through indirection until we get to the last pointer,
// which we might set to null below.
target = fromCtyPopulatePtr(target, true)
if val.IsNull() {
target.Set(reflect.Zero(target.Type()))
return nil
}
// Since a capsule contains a pointer to an object, we'll preserve
// that pointer on the way out and thus allow the caller to recover
// the original object, rather than a copy of it.
eType := val.Type().EncapsulatedType()
if !eType.AssignableTo(target.Elem().Type()) {
// Our interface contract promises that we won't expose Go
// implementation details in error messages, so we need to keep
// this vague. This can only arise if a calling application has
// more than one capsule type in play and a user mixes them up.
return path.NewErrorf("incorrect type %s", val.Type().FriendlyName())
}
target.Set(reflect.ValueOf(val.EncapsulatedValue()))
return nil
} else {
if val.IsNull() {
return path.NewErrorf("null value is not allowed")
}
// If our target isn't a pointer then we will attempt to copy
// the encapsulated value into it.
eType := val.Type().EncapsulatedType()
if !eType.AssignableTo(target.Type()) {
// Our interface contract promises that we won't expose Go
// implementation details in error messages, so we need to keep
// this vague. This can only arise if a calling application has
// more than one capsule type in play and a user mixes them up.
return path.NewErrorf("incorrect type %s", val.Type().FriendlyName())
}
// We know that EncapsulatedValue is always a pointer, so we
// can safely call .Elem on its reflect.Value.
target.Set(reflect.ValueOf(val.EncapsulatedValue()).Elem())
return nil
}
}
// fromCtyPopulatePtr recognizes when target is a pointer type and allocates
// a value to assign to that pointer, which it returns.
//
// If the given value has multiple levels of indirection, like **int, these
// will be processed in turn so that the return value is guaranteed to be
// a non-pointer.
//
// As an exception, if decodingNull is true then the returned value will be
// the final level of pointer, if any, so that the caller can assign it
// as nil to represent a null value. If the given target value is not a pointer
// at all then the returned value will be just the given target, so the caller
// must test if the returned value is a pointer before trying to assign nil
// to it.
func fromCtyPopulatePtr(target reflect.Value, decodingNull bool) reflect.Value {
for {
if target.Kind() == reflect.Interface && !target.IsNil() {
e := target.Elem()
if e.Kind() == reflect.Ptr && !e.IsNil() && (!decodingNull || e.Elem().Kind() == reflect.Ptr) {
target = e
}
}
if target.Kind() != reflect.Ptr {
break
}
// Stop early if we're decodingNull and we've found our last indirection
if target.Elem().Kind() != reflect.Ptr && decodingNull && target.CanSet() {
break
}
if target.IsNil() {
target.Set(reflect.New(target.Type().Elem()))
}
target = target.Elem()
}
return target
}
// likelyRequiredTypesError returns an error that states which types are
// acceptable by making some assumptions about what types we support for
// each target Go kind. It's not a precise science but it allows us to return
// an error message that is cty-user-oriented rather than Go-oriented.
//
// Generally these error messages should be a matter of last resort, since
// the calling application should be validating user-provided value types
// before decoding anyway.
func likelyRequiredTypesError(path cty.Path, target reflect.Value) error {
switch target.Kind() {
case reflect.Bool:
return path.NewErrorf("bool value is required")
case reflect.String:
return path.NewErrorf("string value is required")
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
fallthrough
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
fallthrough
case reflect.Float32, reflect.Float64:
return path.NewErrorf("number value is required")
case reflect.Slice, reflect.Array:
return path.NewErrorf("list or set value is required")
case reflect.Map:
return path.NewErrorf("map or object value is required")
case reflect.Struct:
switch {
case target.Type().AssignableTo(bigFloatType) || target.Type().AssignableTo(bigIntType):
return path.NewErrorf("number value is required")
case target.Type().AssignableTo(setType):
return path.NewErrorf("set or list value is required")
default:
return path.NewErrorf("object or tuple value is required")
}
default:
// We should avoid getting into this path, since this error
// message is rather useless.
return path.NewErrorf("incorrect type")
}
}

View File

@@ -0,0 +1,108 @@
package gocty
import (
"reflect"
"github.com/zclconf/go-cty/cty"
)
// ImpliedType takes an arbitrary Go value (as an interface{}) and attempts
// to find a suitable cty.Type instance that could be used for a conversion
// with ToCtyValue.
//
// This allows -- for simple situations at least -- types to be defined just
// once in Go and the cty types derived from the Go types, but in the process
// it makes some assumptions that may be undesirable so applications are
// encouraged to build their cty types directly if exacting control is
// required.
//
// Not all Go types can be represented as cty types, so an error may be
// returned which is usually considered to be a bug in the calling program.
// In particular, ImpliedType will never use capsule types in its returned
// type, because it cannot know the capsule types supported by the calling
// program.
func ImpliedType(gv interface{}) (cty.Type, error) {
rt := reflect.TypeOf(gv)
var path cty.Path
return impliedType(rt, path)
}
func impliedType(rt reflect.Type, path cty.Path) (cty.Type, error) {
switch rt.Kind() {
case reflect.Ptr:
return impliedType(rt.Elem(), path)
// Primitive types
case reflect.Bool:
return cty.Bool, nil
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return cty.Number, nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return cty.Number, nil
case reflect.Float32, reflect.Float64:
return cty.Number, nil
case reflect.String:
return cty.String, nil
// Collection types
case reflect.Slice:
path := append(path, cty.IndexStep{Key: cty.UnknownVal(cty.Number)})
ety, err := impliedType(rt.Elem(), path)
if err != nil {
return cty.NilType, err
}
return cty.List(ety), nil
case reflect.Map:
if !stringType.AssignableTo(rt.Key()) {
return cty.NilType, path.NewErrorf("no cty.Type for %s (must have string keys)", rt)
}
path := append(path, cty.IndexStep{Key: cty.UnknownVal(cty.String)})
ety, err := impliedType(rt.Elem(), path)
if err != nil {
return cty.NilType, err
}
return cty.Map(ety), nil
// Structural types
case reflect.Struct:
return impliedStructType(rt, path)
default:
return cty.NilType, path.NewErrorf("no cty.Type for %s", rt)
}
}
func impliedStructType(rt reflect.Type, path cty.Path) (cty.Type, error) {
if valueType.AssignableTo(rt) {
// Special case: cty.Value represents cty.DynamicPseudoType, for
// type conformance checking.
return cty.DynamicPseudoType, nil
}
fieldIdxs := structTagIndices(rt)
if len(fieldIdxs) == 0 {
return cty.NilType, path.NewErrorf("no cty.Type for %s (no cty field tags)", rt)
}
atys := make(map[string]cty.Type, len(fieldIdxs))
{
// Temporary extension of path for attributes
path := append(path, nil)
for k, fi := range fieldIdxs {
path[len(path)-1] = cty.GetAttrStep{Name: k}
ft := rt.Field(fi).Type
aty, err := impliedType(ft, path)
if err != nil {
return cty.NilType, err
}
atys[k] = aty
}
}
return cty.Object(atys), nil
}

99
vendor/github.com/zclconf/go-cty/cty/helper.go generated vendored Normal file
View File

@@ -0,0 +1,99 @@
package cty
import (
"fmt"
)
// anyUnknown is a helper to easily check if a set of values contains any
// unknowns, for operations that short-circuit to return unknown in that case.
func anyUnknown(values ...Value) bool {
for _, val := range values {
if _, unknown := val.v.(*unknownType); unknown {
return true
}
}
return false
}
// typeCheck tests whether all of the given values belong to the given type.
// If the given types are a mixture of the given type and the dynamic
// pseudo-type then a short-circuit dynamic value is returned. If the given
// values are all of the correct type but at least one is unknown then
// a short-circuit unknown value is returned. If any other types appear then
// an error is returned. Otherwise (finally!) the result is nil, nil.
func typeCheck(required Type, ret Type, values ...Value) (shortCircuit *Value, err error) {
hasDynamic := false
hasUnknown := false
for i, val := range values {
if val.ty == DynamicPseudoType {
hasDynamic = true
continue
}
if !val.Type().Equals(required) {
return nil, fmt.Errorf(
"type mismatch: want %s but value %d is %s",
required.FriendlyName(),
i, val.ty.FriendlyName(),
)
}
if _, unknown := val.v.(*unknownType); unknown {
hasUnknown = true
}
}
if hasDynamic {
return &DynamicVal, nil
}
if hasUnknown {
ret := UnknownVal(ret)
return &ret, nil
}
return nil, nil
}
// mustTypeCheck is a wrapper around typeCheck that immediately panics if
// any error is returned.
func mustTypeCheck(required Type, ret Type, values ...Value) *Value {
shortCircuit, err := typeCheck(required, ret, values...)
if err != nil {
panic(err)
}
return shortCircuit
}
// shortCircuitForceType takes the return value from mustTypeCheck and
// replaces it with an unknown of the given type if the original value was
// DynamicVal.
//
// This is useful for operations that are specified to always return a
// particular type, since then a dynamic result can safely be "upgrade" to
// a strongly-typed unknown, which then allows subsequent operations to
// be actually type-checked.
//
// It is safe to use this only if the operation in question is defined as
// returning either a value of the given type or panicking, since we know
// then that subsequent operations won't run if the operation panics.
//
// If the given short-circuit value is *not* DynamicVal then it must be
// of the given type, or this function will panic.
func forceShortCircuitType(shortCircuit *Value, ty Type) *Value {
if shortCircuit == nil {
return nil
}
if shortCircuit.ty == DynamicPseudoType {
ret := UnknownVal(ty)
return &ret
}
if !shortCircuit.ty.Equals(ty) {
panic("forceShortCircuitType got value of wrong type")
}
return shortCircuit
}

199
vendor/github.com/zclconf/go-cty/cty/json.go generated vendored Normal file
View File

@@ -0,0 +1,199 @@
package cty
import (
"bytes"
"encoding/json"
"fmt"
"sort"
)
// MarshalJSON is an implementation of json.Marshaler that allows Type
// instances to be serialized as JSON.
//
// All standard types can be serialized, but capsule types cannot since there
// is no way to automatically recover the original pointer and capsule types
// compare by equality.
func (t Type) MarshalJSON() ([]byte, error) {
switch impl := t.typeImpl.(type) {
case primitiveType:
switch impl.Kind {
case primitiveTypeBool:
return []byte{'"', 'b', 'o', 'o', 'l', '"'}, nil
case primitiveTypeNumber:
return []byte{'"', 'n', 'u', 'm', 'b', 'e', 'r', '"'}, nil
case primitiveTypeString:
return []byte{'"', 's', 't', 'r', 'i', 'n', 'g', '"'}, nil
default:
panic("unknown primitive type kind")
}
case typeList, typeMap, typeSet:
buf := &bytes.Buffer{}
etyJSON, err := t.ElementType().MarshalJSON()
if err != nil {
return nil, err
}
buf.WriteRune('[')
switch impl.(type) {
case typeList:
buf.WriteString(`"list"`)
case typeMap:
buf.WriteString(`"map"`)
case typeSet:
buf.WriteString(`"set"`)
}
buf.WriteRune(',')
buf.Write(etyJSON)
buf.WriteRune(']')
return buf.Bytes(), nil
case typeObject:
buf := &bytes.Buffer{}
atysJSON, err := json.Marshal(t.AttributeTypes())
if err != nil {
return nil, err
}
buf.WriteString(`["object",`)
buf.Write(atysJSON)
if optionals := t.OptionalAttributes(); len(optionals) > 0 {
buf.WriteByte(',')
optionalNames := make([]string, 0, len(optionals))
for k := range optionals {
optionalNames = append(optionalNames, k)
}
sort.Strings(optionalNames)
optionalsJSON, err := json.Marshal(optionalNames)
if err != nil {
return nil, err
}
buf.Write(optionalsJSON)
}
buf.WriteRune(']')
return buf.Bytes(), nil
case typeTuple:
buf := &bytes.Buffer{}
etysJSON, err := json.Marshal(t.TupleElementTypes())
if err != nil {
return nil, err
}
buf.WriteString(`["tuple",`)
buf.Write(etysJSON)
buf.WriteRune(']')
return buf.Bytes(), nil
case pseudoTypeDynamic:
return []byte{'"', 'd', 'y', 'n', 'a', 'm', 'i', 'c', '"'}, nil
case *capsuleType:
return nil, fmt.Errorf("type not allowed: %s", t.FriendlyName())
default:
// should never happen
panic("unknown type implementation")
}
}
// UnmarshalJSON is the opposite of MarshalJSON. See the documentation of
// MarshalJSON for information on the limitations of JSON serialization of
// types.
func (t *Type) UnmarshalJSON(buf []byte) error {
r := bytes.NewReader(buf)
dec := json.NewDecoder(r)
tok, err := dec.Token()
if err != nil {
return err
}
switch v := tok.(type) {
case string:
switch v {
case "bool":
*t = Bool
case "number":
*t = Number
case "string":
*t = String
case "dynamic":
*t = DynamicPseudoType
default:
return fmt.Errorf("invalid primitive type name %q", v)
}
if dec.More() {
return fmt.Errorf("extraneous data after type description")
}
return nil
case json.Delim:
if rune(v) != '[' {
return fmt.Errorf("invalid complex type description")
}
tok, err = dec.Token()
if err != nil {
return err
}
kind, ok := tok.(string)
if !ok {
return fmt.Errorf("invalid complex type kind name")
}
switch kind {
case "list":
var ety Type
err = dec.Decode(&ety)
if err != nil {
return err
}
*t = List(ety)
case "map":
var ety Type
err = dec.Decode(&ety)
if err != nil {
return err
}
*t = Map(ety)
case "set":
var ety Type
err = dec.Decode(&ety)
if err != nil {
return err
}
*t = Set(ety)
case "object":
var atys map[string]Type
err = dec.Decode(&atys)
if err != nil {
return err
}
if dec.More() {
var optionals []string
err = dec.Decode(&optionals)
if err != nil {
return err
}
*t = ObjectWithOptionalAttrs(atys, optionals)
} else {
*t = Object(atys)
}
case "tuple":
var etys []Type
err = dec.Decode(&etys)
if err != nil {
return err
}
*t = Tuple(etys)
default:
return fmt.Errorf("invalid complex type kind name")
}
tok, err = dec.Token()
if err != nil {
return err
}
if delim, ok := tok.(json.Delim); !ok || rune(delim) != ']' || dec.More() {
return fmt.Errorf("unexpected extra data in type description")
}
return nil
default:
return fmt.Errorf("invalid type description")
}
}

11
vendor/github.com/zclconf/go-cty/cty/json/doc.go generated vendored Normal file
View File

@@ -0,0 +1,11 @@
// Package json provides functions for serializing cty types and values in
// JSON format, and for decoding them again.
//
// Since the cty type system is a superset of the JSON type system,
// round-tripping through JSON is lossy unless type information is provided
// both at encoding time and decoding time. Callers of this package are
// therefore suggested to define their expected structure as a cty.Type
// and pass it in consistently both when encoding and when decoding, though
// default (type-lossy) behavior is provided for situations where the precise
// representation of the data is not significant.
package json

193
vendor/github.com/zclconf/go-cty/cty/json/marshal.go generated vendored Normal file
View File

@@ -0,0 +1,193 @@
package json
import (
"bytes"
"encoding/json"
"sort"
"github.com/zclconf/go-cty/cty"
)
func marshal(val cty.Value, t cty.Type, path cty.Path, b *bytes.Buffer) error {
if val.IsMarked() {
return path.NewErrorf("value has marks, so it cannot be serialized as JSON")
}
// If we're going to decode as DynamicPseudoType then we need to save
// dynamic type information to recover the real type.
if t == cty.DynamicPseudoType && val.Type() != cty.DynamicPseudoType {
return marshalDynamic(val, path, b)
}
if val.IsNull() {
b.WriteString("null")
return nil
}
if !val.IsKnown() {
return path.NewErrorf("value is not known")
}
// The caller should've guaranteed that the given val is conformant with
// the given type t, so we'll proceed under that assumption here.
switch {
case t.IsPrimitiveType():
switch t {
case cty.String:
json, err := json.Marshal(val.AsString())
if err != nil {
return path.NewErrorf("failed to serialize value: %s", err)
}
b.Write(json)
return nil
case cty.Number:
if val.RawEquals(cty.PositiveInfinity) || val.RawEquals(cty.NegativeInfinity) {
return path.NewErrorf("cannot serialize infinity as JSON")
}
b.WriteString(val.AsBigFloat().Text('f', -1))
return nil
case cty.Bool:
if val.True() {
b.WriteString("true")
} else {
b.WriteString("false")
}
return nil
default:
panic("unsupported primitive type")
}
case t.IsListType(), t.IsSetType():
b.WriteRune('[')
first := true
ety := t.ElementType()
it := val.ElementIterator()
path := append(path, nil) // local override of 'path' with extra element
for it.Next() {
if !first {
b.WriteRune(',')
}
ek, ev := it.Element()
path[len(path)-1] = cty.IndexStep{
Key: ek,
}
err := marshal(ev, ety, path, b)
if err != nil {
return err
}
first = false
}
b.WriteRune(']')
return nil
case t.IsMapType():
b.WriteRune('{')
first := true
ety := t.ElementType()
it := val.ElementIterator()
path := append(path, nil) // local override of 'path' with extra element
for it.Next() {
if !first {
b.WriteRune(',')
}
ek, ev := it.Element()
path[len(path)-1] = cty.IndexStep{
Key: ek,
}
var err error
err = marshal(ek, ek.Type(), path, b)
if err != nil {
return err
}
b.WriteRune(':')
err = marshal(ev, ety, path, b)
if err != nil {
return err
}
first = false
}
b.WriteRune('}')
return nil
case t.IsTupleType():
b.WriteRune('[')
etys := t.TupleElementTypes()
it := val.ElementIterator()
path := append(path, nil) // local override of 'path' with extra element
i := 0
for it.Next() {
if i > 0 {
b.WriteRune(',')
}
ety := etys[i]
ek, ev := it.Element()
path[len(path)-1] = cty.IndexStep{
Key: ek,
}
err := marshal(ev, ety, path, b)
if err != nil {
return err
}
i++
}
b.WriteRune(']')
return nil
case t.IsObjectType():
b.WriteRune('{')
atys := t.AttributeTypes()
path := append(path, nil) // local override of 'path' with extra element
names := make([]string, 0, len(atys))
for k := range atys {
names = append(names, k)
}
sort.Strings(names)
for i, k := range names {
aty := atys[k]
if i > 0 {
b.WriteRune(',')
}
av := val.GetAttr(k)
path[len(path)-1] = cty.GetAttrStep{
Name: k,
}
var err error
err = marshal(cty.StringVal(k), cty.String, path, b)
if err != nil {
return err
}
b.WriteRune(':')
err = marshal(av, aty, path, b)
if err != nil {
return err
}
}
b.WriteRune('}')
return nil
case t.IsCapsuleType():
rawVal := val.EncapsulatedValue()
jsonVal, err := json.Marshal(rawVal)
if err != nil {
return path.NewError(err)
}
b.Write(jsonVal)
return nil
default:
// should never happen
return path.NewErrorf("cannot JSON-serialize %s", t.FriendlyName())
}
}
// marshalDynamic adds an extra wrapping object containing dynamic type
// information for the given value.
func marshalDynamic(val cty.Value, path cty.Path, b *bytes.Buffer) error {
typeJSON, err := MarshalType(val.Type())
if err != nil {
return path.NewErrorf("failed to serialize type: %s", err)
}
b.WriteString(`{"value":`)
marshal(val, val.Type(), path, b)
b.WriteString(`,"type":`)
b.Write(typeJSON)
b.WriteRune('}')
return nil
}

41
vendor/github.com/zclconf/go-cty/cty/json/simple.go generated vendored Normal file
View File

@@ -0,0 +1,41 @@
package json
import (
"github.com/zclconf/go-cty/cty"
)
// SimpleJSONValue is a wrapper around cty.Value that adds implementations of
// json.Marshaler and json.Unmarshaler for simple-but-type-lossy automatic
// encoding and decoding of values.
//
// The couplet Marshal and Unmarshal both take extra type information to
// inform the encoding and decoding process so that all of the cty types
// can be represented even though JSON's type system is a subset.
//
// SimpleJSONValue instead takes the approach of discarding the value's type
// information and then deriving a new type from the stored structure when
// decoding. This results in the same data being returned but not necessarily
// with exactly the same type.
//
// For information on how types are inferred when decoding, see the
// documentation of the function ImpliedType.
type SimpleJSONValue struct {
cty.Value
}
// MarshalJSON is an implementation of json.Marshaler. See the documentation
// of SimpleJSONValue for more information.
func (v SimpleJSONValue) MarshalJSON() ([]byte, error) {
return Marshal(v.Value, v.Type())
}
// UnmarshalJSON is an implementation of json.Unmarshaler. See the
// documentation of SimpleJSONValue for more information.
func (v *SimpleJSONValue) UnmarshalJSON(buf []byte) error {
t, err := ImpliedType(buf)
if err != nil {
return err
}
v.Value, err = Unmarshal(buf, t)
return err
}

23
vendor/github.com/zclconf/go-cty/cty/json/type.go generated vendored Normal file
View File

@@ -0,0 +1,23 @@
package json
import (
"github.com/zclconf/go-cty/cty"
)
// MarshalType returns a JSON serialization of the given type.
//
// This is just a thin wrapper around t.MarshalJSON, for symmetry with
// UnmarshalType.
func MarshalType(t cty.Type) ([]byte, error) {
return t.MarshalJSON()
}
// UnmarshalType decodes a JSON serialization of the given type as produced
// by either Type.MarshalJSON or MarshalType.
//
// This is a convenience wrapper around Type.UnmarshalJSON.
func UnmarshalType(buf []byte) (cty.Type, error) {
var t cty.Type
err := t.UnmarshalJSON(buf)
return t, err
}

View File

@@ -0,0 +1,170 @@
package json
import (
"bytes"
"encoding/json"
"fmt"
"github.com/zclconf/go-cty/cty"
)
// ImpliedType returns the cty Type implied by the structure of the given
// JSON-compliant buffer. This function implements the default type mapping
// behavior used when decoding arbitrary JSON without explicit cty Type
// information.
//
// The rules are as follows:
//
// JSON strings, numbers and bools map to their equivalent primitive type in
// cty.
//
// JSON objects map to cty object types, with the attributes defined by the
// object keys and the types of their values.
//
// JSON arrays map to cty tuple types, with the elements defined by the
// types of the array members.
//
// Any nulls are typed as DynamicPseudoType, so callers of this function
// must be prepared to deal with this. Callers that do not wish to deal with
// dynamic typing should not use this function and should instead describe
// their required types explicitly with a cty.Type instance when decoding.
//
// Any JSON syntax errors will be returned as an error, and the type will
// be the invalid value cty.NilType.
func ImpliedType(buf []byte) (cty.Type, error) {
r := bytes.NewReader(buf)
dec := json.NewDecoder(r)
dec.UseNumber()
ty, err := impliedType(dec)
if err != nil {
return cty.NilType, err
}
if dec.More() {
return cty.NilType, fmt.Errorf("extraneous data after JSON object")
}
return ty, nil
}
func impliedType(dec *json.Decoder) (cty.Type, error) {
tok, err := dec.Token()
if err != nil {
return cty.NilType, err
}
return impliedTypeForTok(tok, dec)
}
func impliedTypeForTok(tok json.Token, dec *json.Decoder) (cty.Type, error) {
if tok == nil {
return cty.DynamicPseudoType, nil
}
switch ttok := tok.(type) {
case bool:
return cty.Bool, nil
case json.Number:
return cty.Number, nil
case string:
return cty.String, nil
case json.Delim:
switch rune(ttok) {
case '{':
return impliedObjectType(dec)
case '[':
return impliedTupleType(dec)
default:
return cty.NilType, fmt.Errorf("unexpected token %q", ttok)
}
default:
return cty.NilType, fmt.Errorf("unsupported JSON token %#v", tok)
}
}
func impliedObjectType(dec *json.Decoder) (cty.Type, error) {
// By the time we get in here, we've already consumed the { delimiter
// and so our next token should be the first object key.
var atys map[string]cty.Type
for {
// Read the object key first
tok, err := dec.Token()
if err != nil {
return cty.NilType, err
}
if ttok, ok := tok.(json.Delim); ok {
if rune(ttok) != '}' {
return cty.NilType, fmt.Errorf("unexpected delimiter %q", ttok)
}
break
}
key, ok := tok.(string)
if !ok {
return cty.NilType, fmt.Errorf("expected string but found %T", tok)
}
// Now read the value
tok, err = dec.Token()
if err != nil {
return cty.NilType, err
}
aty, err := impliedTypeForTok(tok, dec)
if err != nil {
return cty.NilType, err
}
if atys == nil {
atys = make(map[string]cty.Type)
}
atys[key] = aty
}
if len(atys) == 0 {
return cty.EmptyObject, nil
}
return cty.Object(atys), nil
}
func impliedTupleType(dec *json.Decoder) (cty.Type, error) {
// By the time we get in here, we've already consumed the [ delimiter
// and so our next token should be the first value.
var etys []cty.Type
for {
tok, err := dec.Token()
if err != nil {
return cty.NilType, err
}
if ttok, ok := tok.(json.Delim); ok {
if rune(ttok) == ']' {
break
}
}
ety, err := impliedTypeForTok(tok, dec)
if err != nil {
return cty.NilType, err
}
etys = append(etys, ety)
}
if len(etys) == 0 {
return cty.EmptyTuple, nil
}
return cty.Tuple(etys), nil
}

459
vendor/github.com/zclconf/go-cty/cty/json/unmarshal.go generated vendored Normal file
View File

@@ -0,0 +1,459 @@
package json
import (
"bytes"
"encoding/json"
"fmt"
"reflect"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
func unmarshal(buf []byte, t cty.Type, path cty.Path) (cty.Value, error) {
dec := bufDecoder(buf)
tok, err := dec.Token()
if err != nil {
return cty.NilVal, path.NewError(err)
}
if tok == nil {
return cty.NullVal(t), nil
}
if t == cty.DynamicPseudoType {
return unmarshalDynamic(buf, path)
}
switch {
case t.IsPrimitiveType():
val, err := unmarshalPrimitive(tok, t, path)
if err != nil {
return cty.NilVal, err
}
return val, nil
case t.IsListType():
return unmarshalList(buf, t.ElementType(), path)
case t.IsSetType():
return unmarshalSet(buf, t.ElementType(), path)
case t.IsMapType():
return unmarshalMap(buf, t.ElementType(), path)
case t.IsTupleType():
return unmarshalTuple(buf, t.TupleElementTypes(), path)
case t.IsObjectType():
return unmarshalObject(buf, t.AttributeTypes(), path)
case t.IsCapsuleType():
return unmarshalCapsule(buf, t, path)
default:
return cty.NilVal, path.NewErrorf("unsupported type %s", t.FriendlyName())
}
}
func unmarshalPrimitive(tok json.Token, t cty.Type, path cty.Path) (cty.Value, error) {
switch t {
case cty.Bool:
switch v := tok.(type) {
case bool:
return cty.BoolVal(v), nil
case string:
val, err := convert.Convert(cty.StringVal(v), t)
if err != nil {
return cty.NilVal, path.NewError(err)
}
return val, nil
default:
return cty.NilVal, path.NewErrorf("bool is required")
}
case cty.Number:
if v, ok := tok.(json.Number); ok {
tok = string(v)
}
switch v := tok.(type) {
case string:
val, err := cty.ParseNumberVal(v)
if err != nil {
return cty.NilVal, path.NewError(err)
}
return val, nil
default:
return cty.NilVal, path.NewErrorf("number is required")
}
case cty.String:
switch v := tok.(type) {
case string:
return cty.StringVal(v), nil
case json.Number:
return cty.StringVal(string(v)), nil
case bool:
val, err := convert.Convert(cty.BoolVal(v), t)
if err != nil {
return cty.NilVal, path.NewError(err)
}
return val, nil
default:
return cty.NilVal, path.NewErrorf("string is required")
}
default:
// should never happen
panic("unsupported primitive type")
}
}
func unmarshalList(buf []byte, ety cty.Type, path cty.Path) (cty.Value, error) {
dec := bufDecoder(buf)
if err := requireDelim(dec, '['); err != nil {
return cty.NilVal, path.NewError(err)
}
var vals []cty.Value
{
path := append(path, nil)
var idx int64
for dec.More() {
path[len(path)-1] = cty.IndexStep{
Key: cty.NumberIntVal(idx),
}
idx++
rawVal, err := readRawValue(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read list value: %s", err)
}
el, err := unmarshal(rawVal, ety, path)
if err != nil {
return cty.NilVal, err
}
vals = append(vals, el)
}
}
if err := requireDelim(dec, ']'); err != nil {
return cty.NilVal, path.NewError(err)
}
if len(vals) == 0 {
return cty.ListValEmpty(ety), nil
}
return cty.ListVal(vals), nil
}
func unmarshalSet(buf []byte, ety cty.Type, path cty.Path) (cty.Value, error) {
dec := bufDecoder(buf)
if err := requireDelim(dec, '['); err != nil {
return cty.NilVal, path.NewError(err)
}
var vals []cty.Value
{
path := append(path, nil)
for dec.More() {
path[len(path)-1] = cty.IndexStep{
Key: cty.UnknownVal(ety),
}
rawVal, err := readRawValue(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read set value: %s", err)
}
el, err := unmarshal(rawVal, ety, path)
if err != nil {
return cty.NilVal, err
}
vals = append(vals, el)
}
}
if err := requireDelim(dec, ']'); err != nil {
return cty.NilVal, path.NewError(err)
}
if len(vals) == 0 {
return cty.SetValEmpty(ety), nil
}
return cty.SetVal(vals), nil
}
func unmarshalMap(buf []byte, ety cty.Type, path cty.Path) (cty.Value, error) {
dec := bufDecoder(buf)
if err := requireDelim(dec, '{'); err != nil {
return cty.NilVal, path.NewError(err)
}
vals := make(map[string]cty.Value)
{
path := append(path, nil)
for dec.More() {
path[len(path)-1] = cty.IndexStep{
Key: cty.UnknownVal(cty.String),
}
var err error
k, err := requireObjectKey(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read map key: %s", err)
}
path[len(path)-1] = cty.IndexStep{
Key: cty.StringVal(k),
}
rawVal, err := readRawValue(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read map value: %s", err)
}
el, err := unmarshal(rawVal, ety, path)
if err != nil {
return cty.NilVal, err
}
vals[k] = el
}
}
if err := requireDelim(dec, '}'); err != nil {
return cty.NilVal, path.NewError(err)
}
if len(vals) == 0 {
return cty.MapValEmpty(ety), nil
}
return cty.MapVal(vals), nil
}
func unmarshalTuple(buf []byte, etys []cty.Type, path cty.Path) (cty.Value, error) {
dec := bufDecoder(buf)
if err := requireDelim(dec, '['); err != nil {
return cty.NilVal, path.NewError(err)
}
var vals []cty.Value
{
path := append(path, nil)
var idx int
for dec.More() {
if idx >= len(etys) {
return cty.NilVal, path[:len(path)-1].NewErrorf("too many tuple elements (need %d)", len(etys))
}
path[len(path)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(idx)),
}
ety := etys[idx]
idx++
rawVal, err := readRawValue(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read tuple value: %s", err)
}
el, err := unmarshal(rawVal, ety, path)
if err != nil {
return cty.NilVal, err
}
vals = append(vals, el)
}
}
if err := requireDelim(dec, ']'); err != nil {
return cty.NilVal, path.NewError(err)
}
if len(vals) != len(etys) {
return cty.NilVal, path[:len(path)-1].NewErrorf("not enough tuple elements (need %d)", len(etys))
}
if len(vals) == 0 {
return cty.EmptyTupleVal, nil
}
return cty.TupleVal(vals), nil
}
func unmarshalObject(buf []byte, atys map[string]cty.Type, path cty.Path) (cty.Value, error) {
dec := bufDecoder(buf)
if err := requireDelim(dec, '{'); err != nil {
return cty.NilVal, path.NewError(err)
}
vals := make(map[string]cty.Value)
{
objPath := path // some errors report from the object's perspective
path := append(path, nil) // path to a specific attribute
for dec.More() {
var err error
k, err := requireObjectKey(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read object key: %s", err)
}
aty, ok := atys[k]
if !ok {
return cty.NilVal, objPath.NewErrorf("unsupported attribute %q", k)
}
path[len(path)-1] = cty.GetAttrStep{
Name: k,
}
rawVal, err := readRawValue(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read object value: %s", err)
}
el, err := unmarshal(rawVal, aty, path)
if err != nil {
return cty.NilVal, err
}
vals[k] = el
}
}
if err := requireDelim(dec, '}'); err != nil {
return cty.NilVal, path.NewError(err)
}
// Make sure we have a value for every attribute
for k, aty := range atys {
if _, exists := vals[k]; !exists {
vals[k] = cty.NullVal(aty)
}
}
if len(vals) == 0 {
return cty.EmptyObjectVal, nil
}
return cty.ObjectVal(vals), nil
}
func unmarshalCapsule(buf []byte, t cty.Type, path cty.Path) (cty.Value, error) {
rawType := t.EncapsulatedType()
ptrPtr := reflect.New(reflect.PtrTo(rawType))
ptrPtr.Elem().Set(reflect.New(rawType))
ptr := ptrPtr.Elem().Interface()
err := json.Unmarshal(buf, ptr)
if err != nil {
return cty.NilVal, path.NewError(err)
}
return cty.CapsuleVal(t, ptr), nil
}
func unmarshalDynamic(buf []byte, path cty.Path) (cty.Value, error) {
dec := bufDecoder(buf)
if err := requireDelim(dec, '{'); err != nil {
return cty.NilVal, path.NewError(err)
}
var t cty.Type
var valBody []byte // defer actual decoding until we know the type
for dec.More() {
var err error
key, err := requireObjectKey(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read dynamic type descriptor key: %s", err)
}
rawVal, err := readRawValue(dec)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to read dynamic type descriptor value: %s", err)
}
switch key {
case "type":
err := json.Unmarshal(rawVal, &t)
if err != nil {
return cty.NilVal, path.NewErrorf("failed to decode type for dynamic value: %s", err)
}
case "value":
valBody = rawVal
default:
return cty.NilVal, path.NewErrorf("invalid key %q in dynamically-typed value", key)
}
}
if err := requireDelim(dec, '}'); err != nil {
return cty.NilVal, path.NewError(err)
}
if t == cty.NilType {
return cty.NilVal, path.NewErrorf("missing type in dynamically-typed value")
}
if valBody == nil {
return cty.NilVal, path.NewErrorf("missing value in dynamically-typed value")
}
val, err := Unmarshal([]byte(valBody), t)
if err != nil {
return cty.NilVal, path.NewError(err)
}
return val, nil
}
func requireDelim(dec *json.Decoder, d rune) error {
tok, err := dec.Token()
if err != nil {
return err
}
if tok != json.Delim(d) {
return fmt.Errorf("missing expected %c", d)
}
return nil
}
func requireObjectKey(dec *json.Decoder) (string, error) {
tok, err := dec.Token()
if err != nil {
return "", err
}
if s, ok := tok.(string); ok {
return s, nil
}
return "", fmt.Errorf("missing expected object key")
}
func readRawValue(dec *json.Decoder) ([]byte, error) {
var rawVal json.RawMessage
err := dec.Decode(&rawVal)
if err != nil {
return nil, err
}
return []byte(rawVal), nil
}
func bufDecoder(buf []byte) *json.Decoder {
r := bytes.NewReader(buf)
dec := json.NewDecoder(r)
dec.UseNumber()
return dec
}

65
vendor/github.com/zclconf/go-cty/cty/json/value.go generated vendored Normal file
View File

@@ -0,0 +1,65 @@
package json
import (
"bytes"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
// Marshal produces a JSON representation of the given value that can later
// be decoded into a value of the given type.
//
// A type is specified separately to allow for the given type to include
// cty.DynamicPseudoType to represent situations where any type is permitted
// and so type information must be included to allow recovery of the stored
// structure when decoding.
//
// The given type will also be used to attempt automatic conversions of any
// non-conformant types in the given value, although this will not always
// be possible. If the value cannot be made to be conformant then an error is
// returned, which may be a cty.PathError.
//
// Capsule-typed values can be marshalled, but with some caveats. Since
// capsule values are compared by pointer equality, it is impossible to recover
// a value that will compare equal to the original value. Additionally,
// it's not possible to JSON-serialize the capsule type itself, so it's not
// valid to use capsule types within parts of the value that are conformed to
// cty.DynamicPseudoType. Otherwise, a capsule value can be used as long as
// the encapsulated type itself is serializable with the Marshal function
// in encoding/json.
func Marshal(val cty.Value, t cty.Type) ([]byte, error) {
errs := val.Type().TestConformance(t)
if errs != nil {
// Attempt a conversion
var err error
val, err = convert.Convert(val, t)
if err != nil {
return nil, err
}
}
// From this point onward, val can be assumed to be conforming to t.
buf := &bytes.Buffer{}
var path cty.Path
err := marshal(val, t, path, buf)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// Unmarshal decodes a JSON representation of the given value into a cty Value
// conforming to the given type.
//
// While decoding, type conversions will be done where possible to make
// the result conformant even if the types given in JSON are not exactly
// correct. If conversion isn't possible then an error is returned, which
// may be a cty.PathError.
func Unmarshal(buf []byte, t cty.Type) (cty.Value, error) {
var path cty.Path
return unmarshal(buf, t, path)
}

74
vendor/github.com/zclconf/go-cty/cty/list_type.go generated vendored Normal file
View File

@@ -0,0 +1,74 @@
package cty
import (
"fmt"
)
// TypeList instances represent specific list types. Each distinct ElementType
// creates a distinct, non-equal list type.
type typeList struct {
typeImplSigil
ElementTypeT Type
}
// List creates a map type with the given element Type.
//
// List types are CollectionType implementations.
func List(elem Type) Type {
return Type{
typeList{
ElementTypeT: elem,
},
}
}
// Equals returns true if the other Type is a list whose element type is
// equal to that of the receiver.
func (t typeList) Equals(other Type) bool {
ot, isList := other.typeImpl.(typeList)
if !isList {
return false
}
return t.ElementTypeT.Equals(ot.ElementTypeT)
}
func (t typeList) FriendlyName(mode friendlyTypeNameMode) string {
elemName := t.ElementTypeT.friendlyNameMode(mode)
if mode == friendlyTypeConstraintName {
if t.ElementTypeT == DynamicPseudoType {
elemName = "any single type"
}
}
return "list of " + elemName
}
func (t typeList) ElementType() Type {
return t.ElementTypeT
}
func (t typeList) GoString() string {
return fmt.Sprintf("cty.List(%#v)", t.ElementTypeT)
}
// IsListType returns true if the given type is a list type, regardless of its
// element type.
func (t Type) IsListType() bool {
_, ok := t.typeImpl.(typeList)
return ok
}
// ListElementType is a convenience method that checks if the given type is
// a list type, returning a pointer to its element type if so and nil
// otherwise. This is intended to allow convenient conditional branches,
// like so:
//
// if et := t.ListElementType(); et != nil {
// // Do something with *et
// }
func (t Type) ListElementType() *Type {
if lt, ok := t.typeImpl.(typeList); ok {
return &lt.ElementTypeT
}
return nil
}

74
vendor/github.com/zclconf/go-cty/cty/map_type.go generated vendored Normal file
View File

@@ -0,0 +1,74 @@
package cty
import (
"fmt"
)
// TypeList instances represent specific list types. Each distinct ElementType
// creates a distinct, non-equal list type.
type typeMap struct {
typeImplSigil
ElementTypeT Type
}
// Map creates a map type with the given element Type.
//
// Map types are CollectionType implementations.
func Map(elem Type) Type {
return Type{
typeMap{
ElementTypeT: elem,
},
}
}
// Equals returns true if the other Type is a map whose element type is
// equal to that of the receiver.
func (t typeMap) Equals(other Type) bool {
ot, isMap := other.typeImpl.(typeMap)
if !isMap {
return false
}
return t.ElementTypeT.Equals(ot.ElementTypeT)
}
func (t typeMap) FriendlyName(mode friendlyTypeNameMode) string {
elemName := t.ElementTypeT.friendlyNameMode(mode)
if mode == friendlyTypeConstraintName {
if t.ElementTypeT == DynamicPseudoType {
elemName = "any single type"
}
}
return "map of " + elemName
}
func (t typeMap) ElementType() Type {
return t.ElementTypeT
}
func (t typeMap) GoString() string {
return fmt.Sprintf("cty.Map(%#v)", t.ElementTypeT)
}
// IsMapType returns true if the given type is a map type, regardless of its
// element type.
func (t Type) IsMapType() bool {
_, ok := t.typeImpl.(typeMap)
return ok
}
// MapElementType is a convenience method that checks if the given type is
// a map type, returning a pointer to its element type if so and nil
// otherwise. This is intended to allow convenient conditional branches,
// like so:
//
// if et := t.MapElementType(); et != nil {
// // Do something with *et
// }
func (t Type) MapElementType() *Type {
if lt, ok := t.typeImpl.(typeMap); ok {
return &lt.ElementTypeT
}
return nil
}

392
vendor/github.com/zclconf/go-cty/cty/marks.go generated vendored Normal file
View File

@@ -0,0 +1,392 @@
package cty
import (
"fmt"
"strings"
)
// marker is an internal wrapper type used to add special "marks" to values.
//
// A "mark" is an annotation that can be used to represent additional
// characteristics of values that propagate through operation methods to
// result values. However, a marked value cannot be used with integration
// methods normally associated with its type, in order to ensure that
// calling applications don't inadvertently drop marks as they round-trip
// values out of cty and back in again.
//
// Marked values are created only explicitly by the calling application, so
// an application that never marks a value does not need to worry about
// encountering marked values.
type marker struct {
realV interface{}
marks ValueMarks
}
// ValueMarks is a map, representing a set, of "mark" values associated with
// a Value. See Value.Mark for more information on the usage of mark values.
type ValueMarks map[interface{}]struct{}
// NewValueMarks constructs a new ValueMarks set with the given mark values.
//
// If any of the arguments are already ValueMarks values then they'll be merged
// into the result, rather than used directly as individual marks.
func NewValueMarks(marks ...interface{}) ValueMarks {
if len(marks) == 0 {
return nil
}
ret := make(ValueMarks, len(marks))
for _, v := range marks {
if vm, ok := v.(ValueMarks); ok {
// Constructing a new ValueMarks with an existing ValueMarks
// implements a merge operation. (This can cause our result to
// have a larger size than we expected, but that's okay.)
for v := range vm {
ret[v] = struct{}{}
}
continue
}
ret[v] = struct{}{}
}
if len(ret) == 0 {
// If we were merging ValueMarks values together and they were all
// empty then we'll avoid returning a zero-length map and return a
// nil instead, as is conventional.
return nil
}
return ret
}
// Equal returns true if the receiver and the given ValueMarks both contain
// the same marks.
func (m ValueMarks) Equal(o ValueMarks) bool {
if len(m) != len(o) {
return false
}
for v := range m {
if _, ok := o[v]; !ok {
return false
}
}
return true
}
func (m ValueMarks) GoString() string {
var s strings.Builder
s.WriteString("cty.NewValueMarks(")
i := 0
for mv := range m {
if i != 0 {
s.WriteString(", ")
}
s.WriteString(fmt.Sprintf("%#v", mv))
i++
}
s.WriteString(")")
return s.String()
}
// PathValueMarks is a structure that enables tracking marks
// and the paths where they are located in one type
type PathValueMarks struct {
Path Path
Marks ValueMarks
}
func (p PathValueMarks) Equal(o PathValueMarks) bool {
if !p.Path.Equals(o.Path) {
return false
}
if !p.Marks.Equal(o.Marks) {
return false
}
return true
}
// IsMarked returns true if and only if the receiving value carries at least
// one mark. A marked value cannot be used directly with integration methods
// without explicitly unmarking it (and retrieving the markings) first.
func (val Value) IsMarked() bool {
_, ok := val.v.(marker)
return ok
}
// HasMark returns true if and only if the receiving value has the given mark.
func (val Value) HasMark(mark interface{}) bool {
if mr, ok := val.v.(marker); ok {
_, ok := mr.marks[mark]
return ok
}
return false
}
// ContainsMarked returns true if the receiving value or any value within it
// is marked.
//
// This operation is relatively expensive. If you only need a shallow result,
// use IsMarked instead.
func (val Value) ContainsMarked() bool {
ret := false
Walk(val, func(_ Path, v Value) (bool, error) {
if v.IsMarked() {
ret = true
return false, nil
}
return true, nil
})
return ret
}
func (val Value) assertUnmarked() {
if val.IsMarked() {
panic("value is marked, so must be unmarked first")
}
}
// Marks returns a map (representing a set) of all of the mark values
// associated with the receiving value, without changing the marks. Returns nil
// if the value is not marked at all.
func (val Value) Marks() ValueMarks {
if mr, ok := val.v.(marker); ok {
// copy so that the caller can't mutate our internals
ret := make(ValueMarks, len(mr.marks))
for k, v := range mr.marks {
ret[k] = v
}
return ret
}
return nil
}
// HasSameMarks returns true if an only if the receiver and the given other
// value have identical marks.
func (val Value) HasSameMarks(other Value) bool {
vm, vmOK := val.v.(marker)
om, omOK := other.v.(marker)
if vmOK != omOK {
return false
}
if vmOK {
return vm.marks.Equal(om.marks)
}
return true
}
// Mark returns a new value that as the same type and underlying value as
// the receiver but that also carries the given value as a "mark".
//
// Marks are used to carry additional application-specific characteristics
// associated with values. A marked value can be used with operation methods,
// in which case the marks are propagated to the operation results. A marked
// value _cannot_ be used with integration methods, so callers of those
// must derive an unmarked value using Unmark (and thus explicitly handle
// the markings) before calling the integration methods.
//
// The mark value can be any value that would be valid to use as a map key.
// The mark value should be of a named type in order to use the type itself
// as a namespace for markings. That type can be unexported if desired, in
// order to ensure that the mark can only be handled through the defining
// package's own functions.
//
// An application that never calls this method does not need to worry about
// handling marked values.
func (val Value) Mark(mark interface{}) Value {
if _, ok := mark.(ValueMarks); ok {
panic("cannot call Value.Mark with a ValueMarks value (use WithMarks instead)")
}
var newMarker marker
newMarker.realV = val.v
if mr, ok := val.v.(marker); ok {
// It's already a marker, so we'll retain existing marks.
newMarker.marks = make(ValueMarks, len(mr.marks)+1)
for k, v := range mr.marks {
newMarker.marks[k] = v
}
// unwrap the inner marked value, so we don't get multiple layers
// of marking.
newMarker.realV = mr.realV
} else {
// It's not a marker yet, so we're creating the first mark.
newMarker.marks = make(ValueMarks, 1)
}
newMarker.marks[mark] = struct{}{}
return Value{
ty: val.ty,
v: newMarker,
}
}
type applyPathValueMarksTransformer struct {
pvm []PathValueMarks
}
func (t *applyPathValueMarksTransformer) Enter(p Path, v Value) (Value, error) {
return v, nil
}
func (t *applyPathValueMarksTransformer) Exit(p Path, v Value) (Value, error) {
for _, path := range t.pvm {
if p.Equals(path.Path) {
return v.WithMarks(path.Marks), nil
}
}
return v, nil
}
// MarkWithPaths accepts a slice of PathValueMarks to apply
// markers to particular paths and returns the marked
// Value.
func (val Value) MarkWithPaths(pvm []PathValueMarks) Value {
ret, _ := TransformWithTransformer(val, &applyPathValueMarksTransformer{pvm})
return ret
}
// Unmark separates the marks of the receiving value from the value itself,
// removing a new unmarked value and a map (representing a set) of the marks.
//
// If the receiver isn't marked, Unmark returns it verbatim along with a nil
// map of marks.
func (val Value) Unmark() (Value, ValueMarks) {
if !val.IsMarked() {
return val, nil
}
mr := val.v.(marker)
marks := val.Marks() // copy so that the caller can't mutate our internals
return Value{
ty: val.ty,
v: mr.realV,
}, marks
}
type unmarkTransformer struct {
pvm []PathValueMarks
}
func (t *unmarkTransformer) Enter(p Path, v Value) (Value, error) {
unmarkedVal, marks := v.Unmark()
if len(marks) > 0 {
path := make(Path, len(p), len(p)+1)
copy(path, p)
t.pvm = append(t.pvm, PathValueMarks{path, marks})
}
return unmarkedVal, nil
}
func (t *unmarkTransformer) Exit(p Path, v Value) (Value, error) {
return v, nil
}
// UnmarkDeep is similar to Unmark, but it works with an entire nested structure
// rather than just the given value directly.
//
// The result is guaranteed to contain no nested values that are marked, and
// the returned marks set includes the superset of all of the marks encountered
// during the operation.
func (val Value) UnmarkDeep() (Value, ValueMarks) {
t := unmarkTransformer{}
ret, _ := TransformWithTransformer(val, &t)
marks := make(ValueMarks)
for _, pvm := range t.pvm {
for m, s := range pvm.Marks {
marks[m] = s
}
}
return ret, marks
}
// UnmarkDeepWithPaths is like UnmarkDeep, except it returns a slice
// of PathValueMarks rather than a superset of all marks. This allows
// a caller to know which marks are associated with which paths
// in the Value.
func (val Value) UnmarkDeepWithPaths() (Value, []PathValueMarks) {
t := unmarkTransformer{}
ret, _ := TransformWithTransformer(val, &t)
return ret, t.pvm
}
func (val Value) unmarkForce() Value {
unw, _ := val.Unmark()
return unw
}
// WithMarks returns a new value that has the same type and underlying value
// as the receiver and also has the marks from the given maps (representing
// sets).
func (val Value) WithMarks(marks ...ValueMarks) Value {
if len(marks) == 0 {
return val
}
ownMarks := val.Marks()
markCount := len(ownMarks)
for _, s := range marks {
markCount += len(s)
}
if markCount == 0 {
return val
}
newMarks := make(ValueMarks, markCount)
for m := range ownMarks {
newMarks[m] = struct{}{}
}
for _, s := range marks {
for m := range s {
newMarks[m] = struct{}{}
}
}
v := val.v
if mr, ok := v.(marker); ok {
v = mr.realV
}
return Value{
ty: val.ty,
v: marker{
realV: v,
marks: newMarks,
},
}
}
// WithSameMarks returns a new value that has the same type and underlying
// value as the receiver and also has the marks from the given source values.
//
// Use this if you are implementing your own higher-level operations against
// cty using the integration methods, to re-introduce the marks from the
// source values of the operation.
func (val Value) WithSameMarks(srcs ...Value) Value {
if len(srcs) == 0 {
return val
}
ownMarks := val.Marks()
markCount := len(ownMarks)
for _, sv := range srcs {
if mr, ok := sv.v.(marker); ok {
markCount += len(mr.marks)
}
}
if markCount == 0 {
return val
}
newMarks := make(ValueMarks, markCount)
for m := range ownMarks {
newMarks[m] = struct{}{}
}
for _, sv := range srcs {
if mr, ok := sv.v.(marker); ok {
for m := range mr.marks {
newMarks[m] = struct{}{}
}
}
}
v := val.v
if mr, ok := v.(marker); ok {
v = mr.realV
}
return Value{
ty: val.ty,
v: marker{
realV: v,
marks: newMarks,
},
}
}

14
vendor/github.com/zclconf/go-cty/cty/null.go generated vendored Normal file
View File

@@ -0,0 +1,14 @@
package cty
// NullVal returns a null value of the given type. A null can be created of any
// type, but operations on such values will always panic. Calling applications
// are encouraged to use nulls only sparingly, particularly when user-provided
// expressions are to be evaluated, since the precence of nulls creates a
// much higher chance of evaluation errors that can't be caught by a type
// checker.
func NullVal(t Type) Value {
return Value{
ty: t,
v: nil,
}
}

220
vendor/github.com/zclconf/go-cty/cty/object_type.go generated vendored Normal file
View File

@@ -0,0 +1,220 @@
package cty
import (
"fmt"
"sort"
)
type typeObject struct {
typeImplSigil
AttrTypes map[string]Type
AttrOptional map[string]struct{}
}
// Object creates an object type with the given attribute types.
//
// After a map is passed to this function the caller must no longer access it,
// since ownership is transferred to this library.
func Object(attrTypes map[string]Type) Type {
return ObjectWithOptionalAttrs(attrTypes, nil)
}
// ObjectWithOptionalAttrs creates an object type where some of its attributes
// are optional.
//
// This function is EXPERIMENTAL. The behavior of the function or of any other
// functions working either directly or indirectly with a type created by
// this function is not currently considered as a compatibility constraint, and
// is subject to change even in minor-version releases of this module. Other
// modules that work with cty types and values may or may not support object
// types with optional attributes; if they do not, their behavior when
// receiving one may be non-ideal.
//
// Optional attributes are significant only when an object type is being used
// as a target type for conversion in the "convert" package. A value of an
// object type always has a value for each of the attributes in the attribute
// types table, with optional values replaced with null during conversion.
//
// All keys in the optional slice must also exist in the attrTypes map. If not,
// this function will panic.
//
// After a map or array is passed to this function the caller must no longer
// access it, since ownership is transferred to this library.
func ObjectWithOptionalAttrs(attrTypes map[string]Type, optional []string) Type {
attrTypesNorm := make(map[string]Type, len(attrTypes))
for k, v := range attrTypes {
attrTypesNorm[NormalizeString(k)] = v
}
var optionalSet map[string]struct{}
if len(optional) > 0 {
optionalSet = make(map[string]struct{}, len(optional))
for _, k := range optional {
k = NormalizeString(k)
if _, exists := attrTypesNorm[k]; !exists {
panic(fmt.Sprintf("optional contains undeclared attribute %q", k))
}
optionalSet[k] = struct{}{}
}
}
return Type{
typeObject{
AttrTypes: attrTypesNorm,
AttrOptional: optionalSet,
},
}
}
func (t typeObject) Equals(other Type) bool {
if ot, ok := other.typeImpl.(typeObject); ok {
if len(t.AttrTypes) != len(ot.AttrTypes) {
// Fast path: if we don't have the same number of attributes
// then we can't possibly be equal. This also avoids the need
// to test attributes in both directions below, since we know
// there can't be extras in "other".
return false
}
for attr, ty := range t.AttrTypes {
oty, ok := ot.AttrTypes[attr]
if !ok {
return false
}
if !oty.Equals(ty) {
return false
}
_, opt := t.AttrOptional[attr]
_, oopt := ot.AttrOptional[attr]
if opt != oopt {
return false
}
}
return true
}
return false
}
func (t typeObject) FriendlyName(mode friendlyTypeNameMode) string {
// There isn't really a friendly way to write an object type due to its
// complexity, so we'll just do something English-ish. Callers will
// probably want to make some extra effort to avoid ever printing out
// an object type FriendlyName in its entirety. For example, could
// produce an error message by diffing two object types and saying
// something like "Expected attribute foo to be string, but got number".
// TODO: Finish this
return "object"
}
func (t typeObject) GoString() string {
if len(t.AttrTypes) == 0 {
return "cty.EmptyObject"
}
if len(t.AttrOptional) > 0 {
var opt []string
for k := range t.AttrOptional {
opt = append(opt, k)
}
sort.Strings(opt)
return fmt.Sprintf("cty.ObjectWithOptionalAttrs(%#v, %#v)", t.AttrTypes, opt)
}
return fmt.Sprintf("cty.Object(%#v)", t.AttrTypes)
}
// EmptyObject is a shorthand for Object(map[string]Type{}), to more
// easily talk about the empty object type.
var EmptyObject Type
// EmptyObjectVal is the only possible non-null, non-unknown value of type
// EmptyObject.
var EmptyObjectVal Value
func init() {
EmptyObject = Object(map[string]Type{})
EmptyObjectVal = Value{
ty: EmptyObject,
v: map[string]interface{}{},
}
}
// IsObjectType returns true if the given type is an object type, regardless
// of its element type.
func (t Type) IsObjectType() bool {
_, ok := t.typeImpl.(typeObject)
return ok
}
// HasAttribute returns true if the receiver has an attribute with the given
// name, regardless of its type. Will panic if the reciever isn't an object
// type; use IsObjectType to determine whether this operation will succeed.
func (t Type) HasAttribute(name string) bool {
name = NormalizeString(name)
if ot, ok := t.typeImpl.(typeObject); ok {
_, hasAttr := ot.AttrTypes[name]
return hasAttr
}
panic("HasAttribute on non-object Type")
}
// AttributeType returns the type of the attribute with the given name. Will
// panic if the receiver is not an object type (use IsObjectType to confirm)
// or if the object type has no such attribute (use HasAttribute to confirm).
func (t Type) AttributeType(name string) Type {
name = NormalizeString(name)
if ot, ok := t.typeImpl.(typeObject); ok {
aty, hasAttr := ot.AttrTypes[name]
if !hasAttr {
panic("no such attribute")
}
return aty
}
panic("AttributeType on non-object Type")
}
// AttributeTypes returns a map from attribute names to their associated
// types. Will panic if the receiver is not an object type (use IsObjectType
// to confirm).
//
// The returned map is part of the internal state of the type, and is provided
// for read access only. It is forbidden for any caller to modify the returned
// map. For many purposes the attribute-related methods of Value are more
// appropriate and more convenient to use.
func (t Type) AttributeTypes() map[string]Type {
if ot, ok := t.typeImpl.(typeObject); ok {
return ot.AttrTypes
}
panic("AttributeTypes on non-object Type")
}
// OptionalAttributes returns a map representing the set of attributes
// that are optional. Will panic if the receiver is not an object type
// (use IsObjectType to confirm).
//
// The returned map is part of the internal state of the type, and is provided
// for read access only. It is forbidden for any caller to modify the returned
// map.
func (t Type) OptionalAttributes() map[string]struct{} {
if ot, ok := t.typeImpl.(typeObject); ok {
return ot.AttrOptional
}
panic("OptionalAttributes on non-object Type")
}
// AttributeOptional returns true if the attribute of the given name is
// optional.
//
// Will panic if the receiver is not an object type (use IsObjectType to
// confirm) or if the object type has no such attribute (use HasAttribute to
// confirm).
func (t Type) AttributeOptional(name string) bool {
name = NormalizeString(name)
if ot, ok := t.typeImpl.(typeObject); ok {
if _, hasAttr := ot.AttrTypes[name]; !hasAttr {
panic("no such attribute")
}
_, exists := ot.AttrOptional[name]
return exists
}
panic("AttributeDefaultValue on non-object Type")
}

270
vendor/github.com/zclconf/go-cty/cty/path.go generated vendored Normal file
View File

@@ -0,0 +1,270 @@
package cty
import (
"errors"
"fmt"
)
// A Path is a sequence of operations to locate a nested value within a
// data structure.
//
// The empty Path represents the given item. Any PathSteps within represent
// taking a single step down into a data structure.
//
// Path has some convenience methods for gradually constructing a path,
// but callers can also feel free to just produce a slice of PathStep manually
// and convert to this type, which may be more appropriate in environments
// where memory pressure is a concern.
//
// Although a Path is technically mutable, by convention callers should not
// mutate a path once it has been built and passed to some other subsystem.
// Instead, use Copy and then mutate the copy before using it.
type Path []PathStep
// PathStep represents a single step down into a data structure, as part
// of a Path. PathStep is a closed interface, meaning that the only
// permitted implementations are those within this package.
type PathStep interface {
pathStepSigil() pathStepImpl
Apply(Value) (Value, error)
}
// embed pathImpl into a struct to declare it a PathStep implementation
type pathStepImpl struct{}
func (p pathStepImpl) pathStepSigil() pathStepImpl {
return p
}
// Index returns a new Path that is the reciever with an IndexStep appended
// to the end.
//
// This is provided as a convenient way to construct paths, but each call
// will create garbage so it should not be used where memory pressure is a
// concern.
func (p Path) Index(v Value) Path {
ret := make(Path, len(p)+1)
copy(ret, p)
ret[len(p)] = IndexStep{
Key: v,
}
return ret
}
// IndexInt is a typed convenience method for Index.
func (p Path) IndexInt(v int) Path {
return p.Index(NumberIntVal(int64(v)))
}
// IndexString is a typed convenience method for Index.
func (p Path) IndexString(v string) Path {
return p.Index(StringVal(v))
}
// IndexPath is a convenience method to start a new Path with an IndexStep.
func IndexPath(v Value) Path {
return Path{}.Index(v)
}
// IndexIntPath is a typed convenience method for IndexPath.
func IndexIntPath(v int) Path {
return IndexPath(NumberIntVal(int64(v)))
}
// IndexStringPath is a typed convenience method for IndexPath.
func IndexStringPath(v string) Path {
return IndexPath(StringVal(v))
}
// GetAttr returns a new Path that is the reciever with a GetAttrStep appended
// to the end.
//
// This is provided as a convenient way to construct paths, but each call
// will create garbage so it should not be used where memory pressure is a
// concern.
func (p Path) GetAttr(name string) Path {
ret := make(Path, len(p)+1)
copy(ret, p)
ret[len(p)] = GetAttrStep{
Name: name,
}
return ret
}
// Equals compares 2 Paths for exact equality.
func (p Path) Equals(other Path) bool {
if len(p) != len(other) {
return false
}
for i := range p {
pv := p[i]
switch pv := pv.(type) {
case GetAttrStep:
ov, ok := other[i].(GetAttrStep)
if !ok || pv != ov {
return false
}
case IndexStep:
ov, ok := other[i].(IndexStep)
if !ok {
return false
}
if !pv.Key.RawEquals(ov.Key) {
return false
}
default:
// Any invalid steps default to evaluating false.
return false
}
}
return true
}
// HasPrefix determines if the path p contains the provided prefix.
func (p Path) HasPrefix(prefix Path) bool {
if len(prefix) > len(p) {
return false
}
return p[:len(prefix)].Equals(prefix)
}
// GetAttrPath is a convenience method to start a new Path with a GetAttrStep.
func GetAttrPath(name string) Path {
return Path{}.GetAttr(name)
}
// Apply applies each of the steps in turn to successive values starting with
// the given value, and returns the result. If any step returns an error,
// the whole operation returns an error.
func (p Path) Apply(val Value) (Value, error) {
var err error
for i, step := range p {
val, err = step.Apply(val)
if err != nil {
return NilVal, fmt.Errorf("at step %d: %s", i, err)
}
}
return val, nil
}
// LastStep applies the given path up to the last step and then returns
// the resulting value and the final step.
//
// This is useful when dealing with assignment operations, since in that
// case the *value* of the last step is not important (and may not, in fact,
// present at all) and we care only about its location.
//
// Since LastStep applies all steps except the last, it will return errors
// for those steps in the same way as Apply does.
//
// If the path has *no* steps then the returned PathStep will be nil,
// representing that any operation should be applied directly to the
// given value.
func (p Path) LastStep(val Value) (Value, PathStep, error) {
var err error
if len(p) == 0 {
return val, nil, nil
}
journey := p[:len(p)-1]
val, err = journey.Apply(val)
if err != nil {
return NilVal, nil, err
}
return val, p[len(p)-1], nil
}
// Copy makes a shallow copy of the receiver. Often when paths are passed to
// caller code they come with the constraint that they are valid only until
// the caller returns, due to how they are constructed internally. Callers
// can use Copy to conveniently produce a copy of the value that _they_ control
// the validity of.
func (p Path) Copy() Path {
ret := make(Path, len(p))
copy(ret, p)
return ret
}
// IndexStep is a Step implementation representing applying the index operation
// to a value, which must be of either a list, map, or set type.
//
// When describing a path through a *type* rather than a concrete value,
// the Key may be an unknown value, indicating that the step applies to
// *any* key of the given type.
//
// When indexing into a set, the Key is actually the element being accessed
// itself, since in sets elements are their own identity.
type IndexStep struct {
pathStepImpl
Key Value
}
// Apply returns the value resulting from indexing the given value with
// our key value.
func (s IndexStep) Apply(val Value) (Value, error) {
if val == NilVal || val.IsNull() {
return NilVal, errors.New("cannot index a null value")
}
switch s.Key.Type() {
case Number:
if !(val.Type().IsListType() || val.Type().IsTupleType()) {
return NilVal, errors.New("not a list type")
}
case String:
if !val.Type().IsMapType() {
return NilVal, errors.New("not a map type")
}
default:
return NilVal, errors.New("key value not number or string")
}
has := val.HasIndex(s.Key)
if !has.IsKnown() {
return UnknownVal(val.Type().ElementType()), nil
}
if !has.True() {
return NilVal, errors.New("value does not have given index key")
}
return val.Index(s.Key), nil
}
func (s IndexStep) GoString() string {
return fmt.Sprintf("cty.IndexStep{Key:%#v}", s.Key)
}
// GetAttrStep is a Step implementation representing retrieving an attribute
// from a value, which must be of an object type.
type GetAttrStep struct {
pathStepImpl
Name string
}
// Apply returns the value of our named attribute from the given value, which
// must be of an object type that has a value of that name.
func (s GetAttrStep) Apply(val Value) (Value, error) {
if val == NilVal || val.IsNull() {
return NilVal, errors.New("cannot access attributes on a null value")
}
if !val.Type().IsObjectType() {
return NilVal, errors.New("not an object type")
}
if !val.Type().HasAttribute(s.Name) {
return NilVal, fmt.Errorf("object has no attribute %q", s.Name)
}
return val.GetAttr(s.Name), nil
}
func (s GetAttrStep) GoString() string {
return fmt.Sprintf("cty.GetAttrStep{Name:%q}", s.Name)
}

200
vendor/github.com/zclconf/go-cty/cty/path_set.go generated vendored Normal file
View File

@@ -0,0 +1,200 @@
package cty
import (
"fmt"
"hash/crc64"
"github.com/zclconf/go-cty/cty/set"
)
// PathSet represents a set of Path objects. This can be used, for example,
// to talk about a subset of paths within a value that meet some criteria,
// without directly modifying the values at those paths.
type PathSet struct {
set set.Set[Path]
}
// NewPathSet creates and returns a PathSet, with initial contents optionally
// set by the given arguments.
func NewPathSet(paths ...Path) PathSet {
ret := PathSet{
set: set.NewSet(set.Rules[Path](pathSetRules{})),
}
for _, path := range paths {
ret.Add(path)
}
return ret
}
// Add inserts a single given path into the set.
//
// Paths are immutable after construction by convention. It is particularly
// important not to mutate a path after it has been placed into a PathSet.
// If a Path is mutated while in a set, behavior is undefined.
func (s PathSet) Add(path Path) {
s.set.Add(path)
}
// AddAllSteps is like Add but it also adds all of the steps leading to
// the given path.
//
// For example, if given a path representing "foo.bar", it will add both
// "foo" and "bar".
func (s PathSet) AddAllSteps(path Path) {
for i := 1; i <= len(path); i++ {
s.Add(path[:i])
}
}
// Has returns true if the given path is in the receiving set.
func (s PathSet) Has(path Path) bool {
return s.set.Has(path)
}
// List makes and returns a slice of all of the paths in the receiving set,
// in an undefined but consistent order.
func (s PathSet) List() []Path {
if s.Empty() {
return nil
}
ret := make([]Path, 0, s.set.Length())
for it := s.set.Iterator(); it.Next(); {
ret = append(ret, it.Value())
}
return ret
}
// Remove modifies the receving set to no longer include the given path.
// If the given path was already absent, this is a no-op.
func (s PathSet) Remove(path Path) {
s.set.Remove(path)
}
// Empty returns true if the length of the receiving set is zero.
func (s PathSet) Empty() bool {
return s.set.Length() == 0
}
// Union returns a new set whose contents are the union of the receiver and
// the given other set.
func (s PathSet) Union(other PathSet) PathSet {
return PathSet{
set: s.set.Union(other.set),
}
}
// Intersection returns a new set whose contents are the intersection of the
// receiver and the given other set.
func (s PathSet) Intersection(other PathSet) PathSet {
return PathSet{
set: s.set.Intersection(other.set),
}
}
// Subtract returns a new set whose contents are those from the receiver with
// any elements of the other given set subtracted.
func (s PathSet) Subtract(other PathSet) PathSet {
return PathSet{
set: s.set.Subtract(other.set),
}
}
// SymmetricDifference returns a new set whose contents are the symmetric
// difference of the receiver and the given other set.
func (s PathSet) SymmetricDifference(other PathSet) PathSet {
return PathSet{
set: s.set.SymmetricDifference(other.set),
}
}
// Equal returns true if and only if both the receiver and the given other
// set contain exactly the same paths.
func (s PathSet) Equal(other PathSet) bool {
if s.set.Length() != other.set.Length() {
return false
}
// Now we know the lengths are the same we only need to test in one
// direction whether everything in one is in the other.
for it := s.set.Iterator(); it.Next(); {
if !other.set.Has(it.Value()) {
return false
}
}
return true
}
var crc64Table = crc64.MakeTable(crc64.ISO)
var indexStepPlaceholder = []byte("#")
// pathSetRules is an implementation of set.Rules from the set package,
// used internally within PathSet.
type pathSetRules struct {
}
func (r pathSetRules) Hash(path Path) int {
hash := crc64.New(crc64Table)
for _, rawStep := range path {
switch step := rawStep.(type) {
case GetAttrStep:
// (this creates some garbage converting the string name to a
// []byte, but that's okay since cty is not designed to be
// used in tight loops under memory pressure.)
hash.Write([]byte(step.Name))
default:
// For any other step type we just append a predefined value,
// which means that e.g. all indexes into a given collection will
// hash to the same value but we assume that collections are
// small and thus this won't hurt too much.
hash.Write(indexStepPlaceholder)
}
}
// We discard half of the hash on 32-bit platforms; collisions just make
// our lookups take marginally longer, so not a big deal.
return int(hash.Sum64())
}
func (r pathSetRules) Equivalent(aPath, bPath Path) bool {
if len(aPath) != len(bPath) {
return false
}
for i := range aPath {
switch aStep := aPath[i].(type) {
case GetAttrStep:
bStep, ok := bPath[i].(GetAttrStep)
if !ok {
return false
}
if aStep.Name != bStep.Name {
return false
}
case IndexStep:
bStep, ok := bPath[i].(IndexStep)
if !ok {
return false
}
eq := aStep.Key.Equals(bStep.Key)
if !eq.IsKnown() || eq.False() {
return false
}
default:
// Should never happen, since we document PathStep as a closed type.
panic(fmt.Errorf("unsupported step type %T", aStep))
}
}
return true
}
// SameRules is true if both Rules instances are pathSetRules structs.
func (r pathSetRules) SameRules(other set.Rules[Path]) bool {
_, ok := other.(pathSetRules)
return ok
}

169
vendor/github.com/zclconf/go-cty/cty/primitive_type.go generated vendored Normal file
View File

@@ -0,0 +1,169 @@
package cty
import "math/big"
// primitiveType is the hidden implementation of the various primitive types
// that are exposed as variables in this package.
type primitiveType struct {
typeImplSigil
Kind primitiveTypeKind
}
type primitiveTypeKind byte
const (
primitiveTypeBool primitiveTypeKind = 'B'
primitiveTypeNumber primitiveTypeKind = 'N'
primitiveTypeString primitiveTypeKind = 'S'
)
func (t primitiveType) Equals(other Type) bool {
if otherP, ok := other.typeImpl.(primitiveType); ok {
return otherP.Kind == t.Kind
}
return false
}
func (t primitiveType) FriendlyName(mode friendlyTypeNameMode) string {
switch t.Kind {
case primitiveTypeBool:
return "bool"
case primitiveTypeNumber:
return "number"
case primitiveTypeString:
return "string"
default:
// should never happen
panic("invalid primitive type")
}
}
func (t primitiveType) GoString() string {
switch t.Kind {
case primitiveTypeBool:
return "cty.Bool"
case primitiveTypeNumber:
return "cty.Number"
case primitiveTypeString:
return "cty.String"
default:
// should never happen
panic("invalid primitive type")
}
}
// rawNumberEqual is our cty-specific definition of whether two big floats
// underlying cty.Number are "equal" for the purposes of the Value.Equals and
// Value.RawEquals methods.
//
// The built-in equality for big.Float is a direct comparison of the mantissa
// bits and the exponent, but that's too precise a check for cty because we
// routinely send numbers through decimal approximations and back and so
// we only promise to accurately represent the subset of binary floating point
// numbers that can be derived from a decimal string representation.
//
// In respect of the fact that cty only tries to preserve numbers that can
// reasonably be written in JSON documents, we use the string representation of
// a decimal approximation of the number as our comparison, relying on the
// big.Float type's heuristic for discarding extraneous mantissa bits that seem
// likely to only be there as a result of an earlier decimal-to-binary
// approximation during parsing, e.g. in ParseNumberVal.
func rawNumberEqual(a, b *big.Float) bool {
switch {
case (a == nil) != (b == nil):
return false
case a == nil: // b == nil too then, due to previous case
return true
case a.Sign() != b.Sign():
return false
default:
// This format and precision matches that used by cty/json.Marshal,
// and thus achieves our definition of "two numbers are equal if
// we'd use the same JSON serialization for both of them".
const format = 'f'
const prec = -1
aStr := a.Text(format, prec)
bStr := b.Text(format, prec)
// The one exception to our rule about equality-by-stringification is
// negative zero, because we want -0 to always be equal to +0.
const posZero = "0"
const negZero = "-0"
if aStr == negZero {
aStr = posZero
}
if bStr == negZero {
bStr = posZero
}
return aStr == bStr
}
}
// Number is the numeric type. Number values are arbitrary-precision
// decimal numbers, which can then be converted into Go's various numeric
// types only if they are in the appropriate range.
var Number Type
// String is the string type. String values are sequences of unicode codepoints
// encoded internally as UTF-8.
var String Type
// Bool is the boolean type. The two values of this type are True and False.
var Bool Type
// True is the truthy value of type Bool
var True Value
// False is the falsey value of type Bool
var False Value
// Zero is a number value representing exactly zero.
var Zero Value
// PositiveInfinity is a Number value representing positive infinity
var PositiveInfinity Value
// NegativeInfinity is a Number value representing negative infinity
var NegativeInfinity Value
func init() {
Number = Type{
primitiveType{Kind: primitiveTypeNumber},
}
String = Type{
primitiveType{Kind: primitiveTypeString},
}
Bool = Type{
primitiveType{Kind: primitiveTypeBool},
}
True = Value{
ty: Bool,
v: true,
}
False = Value{
ty: Bool,
v: false,
}
Zero = Value{
ty: Number,
v: big.NewFloat(0),
}
PositiveInfinity = Value{
ty: Number,
v: (&big.Float{}).SetInf(false),
}
NegativeInfinity = Value{
ty: Number,
v: (&big.Float{}).SetInf(true),
}
}
// IsPrimitiveType returns true if and only if the reciever is a primitive
// type, which means it's either number, string, or bool. Any two primitive
// types can be safely compared for equality using the standard == operator
// without panic, which is not a guarantee that holds for all types. Primitive
// types can therefore also be used in switch statements.
func (t Type) IsPrimitiveType() bool {
_, ok := t.typeImpl.(primitiveType)
return ok
}

15
vendor/github.com/zclconf/go-cty/cty/set/iterator.go generated vendored Normal file
View File

@@ -0,0 +1,15 @@
package set
type Iterator[T any] struct {
vals []T
idx int
}
func (it *Iterator[T]) Value() T {
return it.vals[it.idx]
}
func (it *Iterator[T]) Next() bool {
it.idx++
return it.idx < len(it.vals)
}

210
vendor/github.com/zclconf/go-cty/cty/set/ops.go generated vendored Normal file
View File

@@ -0,0 +1,210 @@
package set
import (
"sort"
)
// Add inserts the given value into the receiving Set.
//
// This mutates the set in-place. This operation is not thread-safe.
func (s Set[T]) Add(val T) {
hv := s.rules.Hash(val)
if _, ok := s.vals[hv]; !ok {
s.vals[hv] = make([]T, 0, 1)
}
bucket := s.vals[hv]
// See if an equivalent value is already present
for _, ev := range bucket {
if s.rules.Equivalent(val, ev) {
return
}
}
s.vals[hv] = append(bucket, val)
}
// Remove deletes the given value from the receiving set, if indeed it was
// there in the first place. If the value is not present, this is a no-op.
func (s Set[T]) Remove(val T) {
hv := s.rules.Hash(val)
bucket, ok := s.vals[hv]
if !ok {
return
}
for i, ev := range bucket {
if s.rules.Equivalent(val, ev) {
newBucket := make([]T, 0, len(bucket)-1)
newBucket = append(newBucket, bucket[:i]...)
newBucket = append(newBucket, bucket[i+1:]...)
if len(newBucket) > 0 {
s.vals[hv] = newBucket
} else {
delete(s.vals, hv)
}
return
}
}
}
// Has returns true if the given value is in the receiving set, or false if
// it is not.
func (s Set[T]) Has(val T) bool {
hv := s.rules.Hash(val)
bucket, ok := s.vals[hv]
if !ok {
return false
}
for _, ev := range bucket {
if s.rules.Equivalent(val, ev) {
return true
}
}
return false
}
// Copy performs a shallow copy of the receiving set, returning a new set
// with the same rules and elements.
func (s Set[T]) Copy() Set[T] {
ret := NewSet(s.rules)
for k, v := range s.vals {
ret.vals[k] = v
}
return ret
}
// Iterator returns an iterator over values in the set. If the set's rules
// implement OrderedRules then the result is ordered per those rules. If
// no order is provided, or if it is not a total order, then the iteration
// order is undefined but consistent for a particular version of cty. Do not
// rely on specific ordering between cty releases unless the rules order is a
// total order.
//
// The pattern for using the returned iterator is:
//
// it := set.Iterator()
// for it.Next() {
// val := it.Value()
// // ...
// }
//
// Once an iterator has been created for a set, the set *must not* be mutated
// until the iterator is no longer in use.
func (s Set[T]) Iterator() *Iterator[T] {
vals := s.Values()
return &Iterator[T]{
vals: vals,
idx: -1,
}
}
// EachValue calls the given callback once for each value in the set, in an
// undefined order that callers should not depend on.
func (s Set[T]) EachValue(cb func(T)) {
it := s.Iterator()
for it.Next() {
cb(it.Value())
}
}
// Values returns a slice of all the values in the set. If the set rules have
// an order then the result is in that order. If no order is provided or if
// it is not a total order then the result order is undefined, but consistent
// for a particular set value within a specific release of cty.
func (s Set[T]) Values() []T {
var ret []T
// Sort the bucketIds to ensure that we always traverse in a
// consistent order.
bucketIDs := make([]int, 0, len(s.vals))
for id := range s.vals {
bucketIDs = append(bucketIDs, id)
}
sort.Ints(bucketIDs)
for _, bucketID := range bucketIDs {
ret = append(ret, s.vals[bucketID]...)
}
if orderRules, ok := s.rules.(OrderedRules[T]); ok {
sort.SliceStable(ret, func(i, j int) bool {
return orderRules.Less(ret[i], ret[j])
})
}
return ret
}
// Length returns the number of values in the set.
func (s Set[T]) Length() int {
var count int
for _, bucket := range s.vals {
count = count + len(bucket)
}
return count
}
// Union returns a new set that contains all of the members of both the
// receiving set and the given set. Both sets must have the same rules, or
// else this function will panic.
func (s1 Set[T]) Union(s2 Set[T]) Set[T] {
mustHaveSameRules(s1, s2)
rs := NewSet(s1.rules)
s1.EachValue(func(v T) {
rs.Add(v)
})
s2.EachValue(func(v T) {
rs.Add(v)
})
return rs
}
// Intersection returns a new set that contains the values that both the
// receiver and given sets have in common. Both sets must have the same rules,
// or else this function will panic.
func (s1 Set[T]) Intersection(s2 Set[T]) Set[T] {
mustHaveSameRules(s1, s2)
rs := NewSet(s1.rules)
s1.EachValue(func(v T) {
if s2.Has(v) {
rs.Add(v)
}
})
return rs
}
// Subtract returns a new set that contains all of the values from the receiver
// that are not also in the given set. Both sets must have the same rules,
// or else this function will panic.
func (s1 Set[T]) Subtract(s2 Set[T]) Set[T] {
mustHaveSameRules(s1, s2)
rs := NewSet(s1.rules)
s1.EachValue(func(v T) {
if !s2.Has(v) {
rs.Add(v)
}
})
return rs
}
// SymmetricDifference returns a new set that contains all of the values from
// both the receiver and given sets, except those that both sets have in
// common. Both sets must have the same rules, or else this function will
// panic.
func (s1 Set[T]) SymmetricDifference(s2 Set[T]) Set[T] {
mustHaveSameRules(s1, s2)
rs := NewSet(s1.rules)
s1.EachValue(func(v T) {
if !s2.Has(v) {
rs.Add(v)
}
})
s2.EachValue(func(v T) {
if !s1.Has(v) {
rs.Add(v)
}
})
return rs
}

47
vendor/github.com/zclconf/go-cty/cty/set/rules.go generated vendored Normal file
View File

@@ -0,0 +1,47 @@
package set
// Rules represents the operations that define membership for a Set.
//
// Each Set has a Rules instance, whose methods must satisfy the interface
// contracts given below for any value that will be added to the set.
type Rules[T any] interface {
// Hash returns an int that somewhat-uniquely identifies the given value.
//
// A good hash function will minimize collisions for values that will be
// added to the set, though collisions *are* permitted. Collisions will
// simply reduce the efficiency of operations on the set.
Hash(T) int
// Equivalent returns true if and only if the two values are considered
// equivalent for the sake of set membership. Two values that are
// equivalent cannot exist in the set at the same time, and if two
// equivalent values are added it is undefined which one will be
// returned when enumerating all of the set members.
//
// Two values that are equivalent *must* result in the same hash value,
// though it is *not* required that two values with the same hash value
// be equivalent.
Equivalent(T, T) bool
// SameRules returns true if the instance is equivalent to another Rules
// instance over the same element type.
SameRules(Rules[T]) bool
}
// OrderedRules is an extension of Rules that can apply a partial order to
// element values. When a set's Rules implements OrderedRules an iterator
// over the set will return items in the order described by the rules.
//
// If the given order is not a total order (that is, some pairs of non-equivalent
// elements do not have a defined order) then the resulting iteration order
// is undefined but consistent for a particular version of cty. The exact
// order in that case is not part of the contract and is subject to change
// between versions.
type OrderedRules[T any] interface {
Rules[T]
// Less returns true if and only if the first argument should sort before
// the second argument. If the second argument should sort before the first
// or if there is no defined order for the values, return false.
Less(interface{}, interface{}) bool
}

62
vendor/github.com/zclconf/go-cty/cty/set/set.go generated vendored Normal file
View File

@@ -0,0 +1,62 @@
package set
import (
"fmt"
)
// Set is an implementation of the concept of a set: a collection where all
// values are conceptually either in or out of the set, but the members are
// not ordered.
//
// This type primarily exists to be the internal type of sets in cty, but
// it is considered to be at the same level of abstraction as Go's built in
// slice and map collection types, and so should make no cty-specific
// assumptions.
//
// Set operations are not thread safe. It is the caller's responsibility to
// provide mutex guarantees where necessary.
//
// Set operations are not optimized to minimize memory pressure. Mutating
// a set will generally create garbage and so should perhaps be avoided in
// tight loops where memory pressure is a concern.
type Set[T any] struct {
vals map[int][]T
rules Rules[T]
}
// NewSet returns an empty set with the membership rules given.
func NewSet[T any](rules Rules[T]) Set[T] {
return Set[T]{
vals: map[int][]T{},
rules: rules,
}
}
func NewSetFromSlice[T any](rules Rules[T], vals []T) Set[T] {
s := NewSet(rules)
for _, v := range vals {
s.Add(v)
}
return s
}
func sameRules[T any](s1 Set[T], s2 Set[T]) bool {
return s1.rules.SameRules(s2.rules)
}
func mustHaveSameRules[T any](s1 Set[T], s2 Set[T]) {
if !sameRules(s1, s2) {
panic(fmt.Errorf("incompatible set rules: %#v, %#v", s1.rules, s2.rules))
}
}
// HasRules returns true if and only if the receiving set has the given rules
// instance as its rules.
func (s Set[T]) HasRules(rules Rules[T]) bool {
return s.rules.SameRules(rules)
}
// Rules returns the receiving set's rules instance.
func (s Set[T]) Rules() Rules[T] {
return s.rules
}

132
vendor/github.com/zclconf/go-cty/cty/set_helper.go generated vendored Normal file
View File

@@ -0,0 +1,132 @@
package cty
import (
"fmt"
"github.com/zclconf/go-cty/cty/set"
)
// ValueSet is to cty.Set what []cty.Value is to cty.List and
// map[string]cty.Value is to cty.Map. It's provided to allow callers a
// convenient interface for manipulating sets before wrapping them in cty.Set
// values using cty.SetValFromValueSet.
//
// Unlike value slices and value maps, ValueSet instances have a single
// homogenous element type because that is a requirement of the underlying
// set implementation, which uses the element type to select a suitable
// hashing function.
//
// Set mutations are not concurrency-safe.
type ValueSet struct {
// ValueSet is just a thin wrapper around a set.Set with our value-oriented
// "rules" applied. We do this so that the caller can work in terms of
// cty.Value objects even though the set internals use the raw values.
s set.Set[interface{}]
}
// NewValueSet creates and returns a new ValueSet with the given element type.
func NewValueSet(ety Type) ValueSet {
return newValueSet(set.NewSet(newSetRules(ety)))
}
func newValueSet(s set.Set[interface{}]) ValueSet {
return ValueSet{
s: s,
}
}
// ElementType returns the element type for the receiving ValueSet.
func (s ValueSet) ElementType() Type {
return s.s.Rules().(setRules).Type
}
// Add inserts the given value into the receiving set.
func (s ValueSet) Add(v Value) {
s.requireElementType(v)
s.s.Add(v.v)
}
// Remove deletes the given value from the receiving set, if indeed it was
// there in the first place. If the value is not present, this is a no-op.
func (s ValueSet) Remove(v Value) {
s.requireElementType(v)
s.s.Remove(v.v)
}
// Has returns true if the given value is in the receiving set, or false if
// it is not.
func (s ValueSet) Has(v Value) bool {
s.requireElementType(v)
return s.s.Has(v.v)
}
// Copy performs a shallow copy of the receiving set, returning a new set
// with the same rules and elements.
func (s ValueSet) Copy() ValueSet {
return newValueSet(s.s.Copy())
}
// Length returns the number of values in the set.
func (s ValueSet) Length() int {
return s.s.Length()
}
// Values returns a slice of all of the values in the set in no particular
// order.
func (s ValueSet) Values() []Value {
l := s.s.Length()
if l == 0 {
return nil
}
ret := make([]Value, 0, l)
ety := s.ElementType()
for it := s.s.Iterator(); it.Next(); {
ret = append(ret, Value{
ty: ety,
v: it.Value(),
})
}
return ret
}
// Union returns a new set that contains all of the members of both the
// receiving set and the given set. Both sets must have the same element type,
// or else this function will panic.
func (s ValueSet) Union(other ValueSet) ValueSet {
return newValueSet(s.s.Union(other.s))
}
// Intersection returns a new set that contains the values that both the
// receiver and given sets have in common. Both sets must have the same element
// type, or else this function will panic.
func (s ValueSet) Intersection(other ValueSet) ValueSet {
return newValueSet(s.s.Intersection(other.s))
}
// Subtract returns a new set that contains all of the values from the receiver
// that are not also in the given set. Both sets must have the same element
// type, or else this function will panic.
func (s ValueSet) Subtract(other ValueSet) ValueSet {
return newValueSet(s.s.Subtract(other.s))
}
// SymmetricDifference returns a new set that contains all of the values from
// both the receiver and given sets, except those that both sets have in
// common. Both sets must have the same element type, or else this function
// will panic.
func (s ValueSet) SymmetricDifference(other ValueSet) ValueSet {
return newValueSet(s.s.SymmetricDifference(other.s))
}
// requireElementType panics if the given value is not of the set's element type.
//
// It also panics if the given value is marked, because marked values cannot
// be stored in sets.
func (s ValueSet) requireElementType(v Value) {
if v.IsMarked() {
panic("cannot store marked value directly in a set (make the set itself unknown instead)")
}
if !v.Type().Equals(s.ElementType()) {
panic(fmt.Errorf("attempt to use %#v value with set of %#v", v.Type(), s.ElementType()))
}
}

278
vendor/github.com/zclconf/go-cty/cty/set_internals.go generated vendored Normal file
View File

@@ -0,0 +1,278 @@
package cty
import (
"bytes"
"fmt"
"hash/crc32"
"math/big"
"sort"
"github.com/zclconf/go-cty/cty/set"
)
// setRules provides a Rules implementation for the ./set package that
// respects the equality rules for cty values of the given type.
//
// This implementation expects that values added to the set will be
// valid internal values for the given Type, which is to say that wrapping
// the given value in a Value struct along with the ruleset's type should
// produce a valid, working Value.
type setRules struct {
Type Type
}
var _ set.OrderedRules[interface{}] = setRules{}
func newSetRules(ety Type) set.Rules[interface{}] {
return setRules{ety}
}
// Hash returns a hash value for the receiver that can be used for equality
// checks where some inaccuracy is tolerable.
//
// The hash function is value-type-specific, so it is not meaningful to compare
// hash results for values of different types.
//
// This function is not safe to use for security-related applications, since
// the hash used is not strong enough.
func (val Value) Hash() int {
hashBytes, marks := makeSetHashBytes(val)
if len(marks) > 0 {
panic("can't take hash of value that has marks or has embedded values that have marks")
}
return int(crc32.ChecksumIEEE(hashBytes))
}
func (r setRules) Hash(v interface{}) int {
return Value{
ty: r.Type,
v: v,
}.Hash()
}
func (r setRules) Equivalent(v1 interface{}, v2 interface{}) bool {
v1v := Value{
ty: r.Type,
v: v1,
}
v2v := Value{
ty: r.Type,
v: v2,
}
eqv := v1v.Equals(v2v)
// By comparing the result to true we ensure that an Unknown result,
// which will result if either value is unknown, will be considered
// as non-equivalent. Two unknown values are not equivalent for the
// sake of set membership.
return eqv.v == true
}
// SameRules is only true if the other Rules instance is also a setRules struct,
// and the types are considered equal.
func (r setRules) SameRules(other set.Rules[interface{}]) bool {
rules, ok := other.(setRules)
if !ok {
return false
}
return r.Type.Equals(rules.Type)
}
// Less is an implementation of set.OrderedRules so that we can iterate over
// set elements in a consistent order, where such an order is possible.
func (r setRules) Less(v1, v2 interface{}) bool {
v1v := Value{
ty: r.Type,
v: v1,
}
v2v := Value{
ty: r.Type,
v: v2,
}
if v1v.RawEquals(v2v) { // Easy case: if they are equal then v1 can't be less
return false
}
// Null values always sort after non-null values
if v2v.IsNull() && !v1v.IsNull() {
return true
} else if v1v.IsNull() {
return false
}
// Unknown values always sort after known values
if v1v.IsKnown() && !v2v.IsKnown() {
return true
} else if !v1v.IsKnown() {
return false
}
switch r.Type {
case String:
// String values sort lexicographically
return v1v.AsString() < v2v.AsString()
case Bool:
// Weird to have a set of bools, but if we do then false sorts before true.
if v2v.True() || !v1v.True() {
return true
}
return false
case Number:
v1f := v1v.AsBigFloat()
v2f := v2v.AsBigFloat()
return v1f.Cmp(v2f) < 0
default:
// No other types have a well-defined ordering, so we just produce a
// default consistent-but-undefined ordering then. This situation is
// not considered a compatibility constraint; callers should rely only
// on the ordering rules for primitive values.
v1h, _ := makeSetHashBytes(v1v)
v2h, _ := makeSetHashBytes(v2v)
return bytes.Compare(v1h, v2h) < 0
}
}
func makeSetHashBytes(val Value) ([]byte, ValueMarks) {
var buf bytes.Buffer
marks := make(ValueMarks)
appendSetHashBytes(val, &buf, marks)
return buf.Bytes(), marks
}
func appendSetHashBytes(val Value, buf *bytes.Buffer, marks ValueMarks) {
// Exactly what bytes we generate here don't matter as long as the following
// constraints hold:
// - Unknown and null values all generate distinct strings from
// each other and from any normal value of the given type.
// - The delimiter used to separate items in a compound structure can
// never appear literally in any of its elements.
// Since we don't support hetrogenous lists we don't need to worry about
// collisions between values of different types, apart from
// PseudoTypeDynamic.
// If in practice we *do* get a collision then it's not a big deal because
// the Equivalent function will still distinguish values, but set
// performance will be best if we are able to produce a distinct string
// for each distinct value, unknown values notwithstanding.
// Marks aren't considered part of a value for equality-testing purposes,
// so we'll unmark our value before we work with it but we'll remember
// the marks in case the caller needs to re-apply them to a derived
// value.
if val.IsMarked() {
unmarkedVal, valMarks := val.Unmark()
for m := range valMarks {
marks[m] = struct{}{}
}
val = unmarkedVal
}
if !val.IsKnown() {
buf.WriteRune('?')
return
}
if val.IsNull() {
buf.WriteRune('~')
return
}
switch val.ty {
case Number:
// Due to an unfortunate quirk of gob encoding for big.Float, we end up
// with non-pointer values immediately after a gob round-trip, and
// we end up in here before we've had a chance to run
// gobDecodeFixNumberPtr on the inner values of a gob-encoded set,
// and so sadly we must make a special effort to handle that situation
// here just so that we can get far enough along to fix it up for
// everything else in this package.
if bf, ok := val.v.(big.Float); ok {
buf.WriteString(bf.String())
return
}
buf.WriteString(val.v.(*big.Float).String())
return
case Bool:
if val.v.(bool) {
buf.WriteRune('T')
} else {
buf.WriteRune('F')
}
return
case String:
buf.WriteString(fmt.Sprintf("%q", val.v.(string)))
return
}
if val.ty.IsMapType() {
buf.WriteRune('{')
val.ForEachElement(func(keyVal, elementVal Value) bool {
appendSetHashBytes(keyVal, buf, marks)
buf.WriteRune(':')
appendSetHashBytes(elementVal, buf, marks)
buf.WriteRune(';')
return false
})
buf.WriteRune('}')
return
}
if val.ty.IsListType() || val.ty.IsSetType() {
buf.WriteRune('[')
val.ForEachElement(func(keyVal, elementVal Value) bool {
appendSetHashBytes(elementVal, buf, marks)
buf.WriteRune(';')
return false
})
buf.WriteRune(']')
return
}
if val.ty.IsObjectType() {
buf.WriteRune('<')
attrNames := make([]string, 0, len(val.ty.AttributeTypes()))
for attrName := range val.ty.AttributeTypes() {
attrNames = append(attrNames, attrName)
}
sort.Strings(attrNames)
for _, attrName := range attrNames {
appendSetHashBytes(val.GetAttr(attrName), buf, marks)
buf.WriteRune(';')
}
buf.WriteRune('>')
return
}
if val.ty.IsTupleType() {
buf.WriteRune('<')
val.ForEachElement(func(keyVal, elementVal Value) bool {
appendSetHashBytes(elementVal, buf, marks)
buf.WriteRune(';')
return false
})
buf.WriteRune('>')
return
}
if val.ty.IsCapsuleType() {
buf.WriteRune('«')
ops := val.ty.CapsuleOps()
if ops != nil && ops.HashKey != nil {
key := ops.HashKey(val.EncapsulatedValue())
buf.WriteString(fmt.Sprintf("%q", key))
} else {
// If there isn't an explicit hash implementation then we'll
// just generate the same hash value for every value of this
// type, which is logically fine but less efficient for
// larger sets because we'll have to bucket all values
// together and scan over them with Equals to determine
// set membership.
buf.WriteRune('?')
}
buf.WriteRune('»')
return
}
// should never get down here
panic(fmt.Sprintf("unsupported type %#v in set hash", val.ty))
}

72
vendor/github.com/zclconf/go-cty/cty/set_type.go generated vendored Normal file
View File

@@ -0,0 +1,72 @@
package cty
import (
"fmt"
)
type typeSet struct {
typeImplSigil
ElementTypeT Type
}
// Set creates a set type with the given element Type.
//
// Set types are CollectionType implementations.
func Set(elem Type) Type {
return Type{
typeSet{
ElementTypeT: elem,
},
}
}
// Equals returns true if the other Type is a set whose element type is
// equal to that of the receiver.
func (t typeSet) Equals(other Type) bool {
ot, isSet := other.typeImpl.(typeSet)
if !isSet {
return false
}
return t.ElementTypeT.Equals(ot.ElementTypeT)
}
func (t typeSet) FriendlyName(mode friendlyTypeNameMode) string {
elemName := t.ElementTypeT.friendlyNameMode(mode)
if mode == friendlyTypeConstraintName {
if t.ElementTypeT == DynamicPseudoType {
elemName = "any single type"
}
}
return "set of " + elemName
}
func (t typeSet) ElementType() Type {
return t.ElementTypeT
}
func (t typeSet) GoString() string {
return fmt.Sprintf("cty.Set(%#v)", t.ElementTypeT)
}
// IsSetType returns true if the given type is a list type, regardless of its
// element type.
func (t Type) IsSetType() bool {
_, ok := t.typeImpl.(typeSet)
return ok
}
// SetElementType is a convenience method that checks if the given type is
// a set type, returning a pointer to its element type if so and nil
// otherwise. This is intended to allow convenient conditional branches,
// like so:
//
// if et := t.SetElementType(); et != nil {
// // Do something with *et
// }
func (t Type) SetElementType() *Type {
if lt, ok := t.typeImpl.(typeSet); ok {
return &lt.ElementTypeT
}
return nil
}

121
vendor/github.com/zclconf/go-cty/cty/tuple_type.go generated vendored Normal file
View File

@@ -0,0 +1,121 @@
package cty
import (
"fmt"
)
type typeTuple struct {
typeImplSigil
ElemTypes []Type
}
// Tuple creates a tuple type with the given element types.
//
// After a slice is passed to this function the caller must no longer access
// the underlying array, since ownership is transferred to this library.
func Tuple(elemTypes []Type) Type {
return Type{
typeTuple{
ElemTypes: elemTypes,
},
}
}
func (t typeTuple) Equals(other Type) bool {
if ot, ok := other.typeImpl.(typeTuple); ok {
if len(t.ElemTypes) != len(ot.ElemTypes) {
// Fast path: if we don't have the same number of elements
// then we can't possibly be equal.
return false
}
for i, ty := range t.ElemTypes {
oty := ot.ElemTypes[i]
if !ok {
return false
}
if !oty.Equals(ty) {
return false
}
}
return true
}
return false
}
func (t typeTuple) FriendlyName(mode friendlyTypeNameMode) string {
// There isn't really a friendly way to write a tuple type due to its
// complexity, so we'll just do something English-ish. Callers will
// probably want to make some extra effort to avoid ever printing out
// a tuple type FriendlyName in its entirety. For example, could
// produce an error message by diffing two object types and saying
// something like "Expected attribute foo to be string, but got number".
// TODO: Finish this
return "tuple"
}
func (t typeTuple) GoString() string {
if len(t.ElemTypes) == 0 {
return "cty.EmptyTuple"
}
return fmt.Sprintf("cty.Tuple(%#v)", t.ElemTypes)
}
// EmptyTuple is a shorthand for Tuple([]Type{}), to more easily talk about
// the empty tuple type.
var EmptyTuple Type
// EmptyTupleVal is the only possible non-null, non-unknown value of type
// EmptyTuple.
var EmptyTupleVal Value
func init() {
EmptyTuple = Tuple([]Type{})
EmptyTupleVal = Value{
ty: EmptyTuple,
v: []interface{}{},
}
}
// IsTupleType returns true if the given type is an object type, regardless
// of its element type.
func (t Type) IsTupleType() bool {
_, ok := t.typeImpl.(typeTuple)
return ok
}
// Length returns the number of elements of the receiving tuple type.
// Will panic if the reciever isn't a tuple type; use IsTupleType to determine
// whether this operation will succeed.
func (t Type) Length() int {
if ot, ok := t.typeImpl.(typeTuple); ok {
return len(ot.ElemTypes)
}
panic("Length on non-tuple Type")
}
// TupleElementType returns the type of the element with the given index. Will
// panic if the receiver is not a tuple type (use IsTupleType to confirm)
// or if the index is out of range (use Length to confirm).
func (t Type) TupleElementType(idx int) Type {
if ot, ok := t.typeImpl.(typeTuple); ok {
return ot.ElemTypes[idx]
}
panic("TupleElementType on non-tuple Type")
}
// TupleElementTypes returns a slice of the recieving tuple type's element
// types. Will panic if the receiver is not a tuple type (use IsTupleType
// to confirm).
//
// The returned slice is part of the internal state of the type, and is provided
// for read access only. It is forbidden for any caller to modify the
// underlying array. For many purposes the element-related methods of Value
// are more appropriate and more convenient to use.
func (t Type) TupleElementTypes() []Type {
if ot, ok := t.typeImpl.(typeTuple); ok {
return ot.ElemTypes
}
panic("TupleElementTypes on non-tuple Type")
}

161
vendor/github.com/zclconf/go-cty/cty/type.go generated vendored Normal file
View File

@@ -0,0 +1,161 @@
package cty
// Type represents value types within the type system.
//
// This is a closed interface type, meaning that only the concrete
// implementations provided within this package are considered valid.
type Type struct {
typeImpl
}
type typeImpl interface {
// isTypeImpl is a do-nothing method that exists only to express
// that a type is an implementation of typeImpl.
isTypeImpl() typeImplSigil
// Equals returns true if the other given Type exactly equals the
// receiver Type.
Equals(other Type) bool
// FriendlyName returns a human-friendly *English* name for the given
// type.
FriendlyName(mode friendlyTypeNameMode) string
// GoString implements the GoStringer interface from package fmt.
GoString() string
}
// Base implementation of Type to embed into concrete implementations
// to signal that they are implementations of Type.
type typeImplSigil struct{}
func (t typeImplSigil) isTypeImpl() typeImplSigil {
return typeImplSigil{}
}
// Equals returns true if the other given Type exactly equals the receiver
// type.
func (t Type) Equals(other Type) bool {
if t == NilType || other == NilType {
return t == other
}
return t.typeImpl.Equals(other)
}
// FriendlyName returns a human-friendly *English* name for the given type.
func (t Type) FriendlyName() string {
return t.typeImpl.FriendlyName(friendlyTypeName)
}
// FriendlyNameForConstraint is similar to FriendlyName except that the
// result is specialized for describing type _constraints_ rather than types
// themselves. This is more appropriate when reporting that a particular value
// does not conform to an expected type constraint.
//
// In particular, this function uses the term "any type" to refer to
// cty.DynamicPseudoType, rather than "dynamic" as returned by FriendlyName.
func (t Type) FriendlyNameForConstraint() string {
return t.typeImpl.FriendlyName(friendlyTypeConstraintName)
}
// friendlyNameMode is an internal combination of the various FriendlyName*
// variants that just directly takes a mode, for easy passthrough for
// recursive name construction.
func (t Type) friendlyNameMode(mode friendlyTypeNameMode) string {
return t.typeImpl.FriendlyName(mode)
}
// GoString returns a string approximating how the receiver type would be
// expressed in Go source code.
func (t Type) GoString() string {
if t.typeImpl == nil {
return "cty.NilType"
}
return t.typeImpl.GoString()
}
// NilType is an invalid type used when a function is returning an error
// and has no useful type to return. It should not be used and any methods
// called on it will panic.
var NilType = Type{}
// HasDynamicTypes returns true either if the receiver is itself
// DynamicPseudoType or if it is a compound type whose descendent elements
// are DynamicPseudoType.
func (t Type) HasDynamicTypes() bool {
switch {
case t == DynamicPseudoType:
return true
case t.IsPrimitiveType():
return false
case t.IsCollectionType():
return t.ElementType().HasDynamicTypes()
case t.IsObjectType():
attrTypes := t.AttributeTypes()
for _, at := range attrTypes {
if at.HasDynamicTypes() {
return true
}
}
return false
case t.IsTupleType():
elemTypes := t.TupleElementTypes()
for _, et := range elemTypes {
if et.HasDynamicTypes() {
return true
}
}
return false
case t.IsCapsuleType():
return false
default:
// Should never happen, since above should be exhaustive
panic("HasDynamicTypes does not support the given type")
}
}
// WithoutOptionalAttributesDeep returns a type equivalent to the receiver but
// with any objects with optional attributes converted into fully concrete
// object types. This operation is applied recursively.
func (t Type) WithoutOptionalAttributesDeep() Type {
switch {
case t == DynamicPseudoType, t.IsPrimitiveType(), t.IsCapsuleType():
return t
case t.IsMapType():
return Map(t.ElementType().WithoutOptionalAttributesDeep())
case t.IsListType():
return List(t.ElementType().WithoutOptionalAttributesDeep())
case t.IsSetType():
return Set(t.ElementType().WithoutOptionalAttributesDeep())
case t.IsTupleType():
originalElemTypes := t.TupleElementTypes()
elemTypes := make([]Type, len(originalElemTypes))
for i, et := range originalElemTypes {
elemTypes[i] = et.WithoutOptionalAttributesDeep()
}
return Tuple(elemTypes)
case t.IsObjectType():
originalAttrTypes := t.AttributeTypes()
attrTypes := make(map[string]Type, len(originalAttrTypes))
for k, t := range originalAttrTypes {
attrTypes[k] = t.WithoutOptionalAttributesDeep()
}
// This is the subtle line which does all the work of this function: by
// constructing a new Object type with these attribute types, we drop
// the list of optional attributes (if present). This results in a
// concrete Object type which requires all of the original attributes.
return Object(attrTypes)
default:
// Should never happen, since above should be exhaustive
panic("WithoutOptionalAttributesDeep does not support the given type")
}
}
type friendlyTypeNameMode rune
const (
friendlyTypeName friendlyTypeNameMode = 'N'
friendlyTypeConstraintName friendlyTypeNameMode = 'C'
)

139
vendor/github.com/zclconf/go-cty/cty/type_conform.go generated vendored Normal file
View File

@@ -0,0 +1,139 @@
package cty
// TestConformance recursively walks the receiver and the given other type and
// returns nil if the receiver *conforms* to the given type.
//
// Type conformance is similar to type equality but has one crucial difference:
// PseudoTypeDynamic can be used within the given type to represent that
// *any* type is allowed.
//
// If any non-conformities are found, the returned slice will be non-nil and
// contain at least one error value. It will be nil if the type is entirely
// conformant.
//
// Note that the special behavior of PseudoTypeDynamic is the *only* exception
// to normal type equality. Calling applications may wish to apply their own
// automatic conversion logic to the given data structure to create a more
// liberal notion of conformance to a type.
//
// Returned errors are usually (but not always) PathError instances that
// indicate where in the structure the error was found. If a returned error
// is of that type then the error message is written for (English-speaking)
// end-users working within the cty type system, not mentioning any Go-oriented
// implementation details.
func (t Type) TestConformance(other Type) []error {
path := make(Path, 0)
var errs []error
testConformance(t, other, path, &errs)
return errs
}
func testConformance(given Type, want Type, path Path, errs *[]error) {
if want.Equals(DynamicPseudoType) {
// anything goes!
return
}
if given.Equals(want) {
// Any equal types are always conformant
return
}
// The remainder of this function is concerned with detecting
// and reporting the specific non-conformance, since we wouldn't
// have got here if the types were not divergent.
// We treat compound structures as special so that we can report
// specifically what is non-conforming, rather than simply returning
// the entire type names and letting the user puzzle it out.
if given.IsObjectType() && want.IsObjectType() {
givenAttrs := given.AttributeTypes()
wantAttrs := want.AttributeTypes()
for k := range givenAttrs {
if _, exists := wantAttrs[k]; !exists {
*errs = append(
*errs,
errorf(path, "unsupported attribute %q", k),
)
}
}
for k := range wantAttrs {
if _, exists := givenAttrs[k]; !exists {
*errs = append(
*errs,
errorf(path, "missing required attribute %q", k),
)
}
}
path = append(path, nil)
pathIdx := len(path) - 1
for k, wantAttrType := range wantAttrs {
if givenAttrType, exists := givenAttrs[k]; exists {
path[pathIdx] = GetAttrStep{Name: k}
testConformance(givenAttrType, wantAttrType, path, errs)
}
}
path = path[0:pathIdx]
return
}
if given.IsTupleType() && want.IsTupleType() {
givenElems := given.TupleElementTypes()
wantElems := want.TupleElementTypes()
if len(givenElems) != len(wantElems) {
*errs = append(
*errs,
errorf(path, "%d elements are required, but got %d", len(wantElems), len(givenElems)),
)
return
}
path = append(path, nil)
pathIdx := len(path) - 1
for i, wantElemType := range wantElems {
givenElemType := givenElems[i]
path[pathIdx] = IndexStep{Key: NumberIntVal(int64(i))}
testConformance(givenElemType, wantElemType, path, errs)
}
path = path[0:pathIdx]
return
}
if given.IsListType() && want.IsListType() {
path = append(path, IndexStep{Key: UnknownVal(Number)})
pathIdx := len(path) - 1
testConformance(given.ElementType(), want.ElementType(), path, errs)
path = path[0:pathIdx]
return
}
if given.IsMapType() && want.IsMapType() {
path = append(path, IndexStep{Key: UnknownVal(String)})
pathIdx := len(path) - 1
testConformance(given.ElementType(), want.ElementType(), path, errs)
path = path[0:pathIdx]
return
}
if given.IsSetType() && want.IsSetType() {
path = append(path, IndexStep{Key: UnknownVal(given.ElementType())})
pathIdx := len(path) - 1
testConformance(given.ElementType(), want.ElementType(), path, errs)
path = path[0:pathIdx]
return
}
*errs = append(
*errs,
errorf(path, "%s required, but received %s", want.FriendlyName(), given.FriendlyName()),
)
}

93
vendor/github.com/zclconf/go-cty/cty/unknown.go generated vendored Normal file
View File

@@ -0,0 +1,93 @@
package cty
// unknownType is the placeholder type used for the sigil value representing
// "Unknown", to make it unambigiously distinct from any other possible value.
type unknownType struct {
// refinement is an optional object which, if present, describes some
// additional constraints we know about the range of real values this
// unknown value could be a placeholder for.
refinement unknownValRefinement
}
// totallyUnknown is the representation a a value we know nothing about at
// all. Subsequent refinements of an unknown value will cause creation of
// other values of unknownType that can represent additional constraints
// on the unknown value, but all unknown values start as totally unknown
// and we will also typically lose all unknown value refinements when
// round-tripping through serialization formats.
var totallyUnknown interface{} = &unknownType{}
// UnknownVal returns an Value that represents an unknown value of the given
// type. Unknown values can be used to represent a value that is
// not yet known. Its meaning is undefined in cty, but it could be used by
// an calling application to allow partial evaluation.
//
// Unknown values of any type can be created of any type. All operations on
// Unknown values themselves return Unknown.
func UnknownVal(t Type) Value {
return Value{
ty: t,
v: totallyUnknown,
}
}
func (t unknownType) GoString() string {
// This is the stringification of our internal unknown marker. The
// stringification of the public representation of unknowns is in
// Value.GoString.
return "cty.unknown"
}
type pseudoTypeDynamic struct {
typeImplSigil
}
// DynamicPseudoType represents the dynamic pseudo-type.
//
// This type can represent situations where a type is not yet known. Its
// meaning is undefined in cty, but it could be used by a calling
// application to allow expression type checking with some types not yet known.
// For example, the application might optimistically permit any operation on
// values of this type in type checking, allowing a partial type-check result,
// and then repeat the check when more information is known to get the
// final, concrete type.
//
// It is a pseudo-type because it is used only as a sigil to the calling
// application. "Unknown" is the only valid value of this pseudo-type, so
// operations on values of this type will always short-circuit as per
// the rules for that special value.
var DynamicPseudoType Type
func (t pseudoTypeDynamic) Equals(other Type) bool {
_, ok := other.typeImpl.(pseudoTypeDynamic)
return ok
}
func (t pseudoTypeDynamic) FriendlyName(mode friendlyTypeNameMode) string {
switch mode {
case friendlyTypeConstraintName:
return "any type"
default:
return "dynamic"
}
}
func (t pseudoTypeDynamic) GoString() string {
return "cty.DynamicPseudoType"
}
// DynamicVal is the only valid value of the pseudo-type dynamic.
// This value can be used as a placeholder where a value or expression's
// type and value are both unknown, thus allowing partial evaluation. See
// the docs for DynamicPseudoType for more information.
var DynamicVal Value
func init() {
DynamicPseudoType = Type{
pseudoTypeDynamic{},
}
DynamicVal = Value{
ty: DynamicPseudoType,
v: totallyUnknown,
}
}

View File

@@ -0,0 +1,64 @@
package cty
// UnknownAsNull returns a value of the same type as the given value but
// with any unknown values (including nested values) replaced with null
// values of the same type.
//
// This can be useful if a result is to be serialized in a format that can't
// represent unknowns, such as JSON, as long as the caller does not need to
// retain the unknown value information.
func UnknownAsNull(val Value) Value {
ty := val.Type()
switch {
case val.IsNull():
return val
case !val.IsKnown():
return NullVal(ty)
case ty.IsListType() || ty.IsTupleType() || ty.IsSetType():
length := val.LengthInt()
if length == 0 {
// If there are no elements then we can't have unknowns
return val
}
vals := make([]Value, 0, length)
it := val.ElementIterator()
for it.Next() {
_, v := it.Element()
vals = append(vals, UnknownAsNull(v))
}
switch {
case ty.IsListType():
return ListVal(vals)
case ty.IsTupleType():
return TupleVal(vals)
default:
return SetVal(vals)
}
case ty.IsMapType() || ty.IsObjectType():
var length int
switch {
case ty.IsMapType():
length = val.LengthInt()
default:
length = len(val.Type().AttributeTypes())
}
if length == 0 {
// If there are no elements then we can't have unknowns
return val
}
vals := make(map[string]Value, length)
it := val.ElementIterator()
for it.Next() {
k, v := it.Element()
vals[k.AsString()] = UnknownAsNull(v)
}
switch {
case ty.IsMapType():
return MapVal(vals)
default:
return ObjectVal(vals)
}
}
return val
}

View File

@@ -0,0 +1,747 @@
package cty
import (
"fmt"
"math"
"strings"
"github.com/zclconf/go-cty/cty/ctystrings"
)
// Refine creates a [RefinementBuilder] with which to annotate the reciever
// with zero or more additional refinements that constrain the range of
// the value.
//
// Calling methods on a RefinementBuilder for a known value essentially just
// serves as assertions about the range of that value, leading to panics if
// those assertions don't hold in practice. This is mainly supported just to
// make programs that rely on refinements automatically self-check by using
// the refinement codepath unconditionally on both placeholders and final
// values for those placeholders. It's always a bug to refine the range of
// an unknown value and then later substitute an exact value outside of the
// refined range.
//
// Calling methods on a RefinementBuilder for an unknown value is perhaps
// more useful because the newly-refined value will then be a placeholder for
// a smaller range of values and so it may be possible for other operations
// on the unknown value to return a known result despite the exact value not
// yet being known.
//
// It is never valid to refine [DynamicVal], because that value is a
// placeholder for a value about which we knkow absolutely nothing. A value
// must at least have a known root type before it can support further
// refinement.
func (v Value) Refine() *RefinementBuilder {
v, marks := v.Unmark()
if unk, isUnk := v.v.(*unknownType); isUnk && unk.refinement != nil {
// We're refining a value that's already been refined before, so
// we'll start from a copy of its existing refinements.
wip := unk.refinement.copy()
return &RefinementBuilder{v, marks, wip}
}
ty := v.Type()
var wip unknownValRefinement
switch {
case ty == DynamicPseudoType && !v.IsKnown():
panic("cannot refine an unknown value of an unknown type")
case ty == String:
wip = &refinementString{}
case ty == Number:
wip = &refinementNumber{}
case ty.IsCollectionType():
wip = &refinementCollection{
// A collection can never have a negative length, so we'll
// start with that already constrained.
minLen: 0,
maxLen: math.MaxInt,
}
case ty == Bool || ty.IsObjectType() || ty.IsTupleType() || ty.IsCapsuleType():
// For other known types we'll just track nullability
wip = &refinementNullable{}
case ty == DynamicPseudoType && v.IsNull():
// It's okay in principle to refine a null value of unknown type,
// although all we can refine about it is that it's definitely null and
// so this is pretty pointless and only supported to avoid callers
// always needing to treat this situation as a special case to avoid
// panic.
wip = &refinementNullable{
isNull: tristateTrue,
}
default:
// we leave "wip" as nil for all other types, representing that
// they don't support refinements at all and so any call on the
// RefinementBuilder should fail.
// NOTE: We intentionally don't allow any refinements for
// cty.DynamicVal here, even though it could be nice in principle
// to at least track non-nullness for those, because it's historically
// been valid to directly compare values with cty.DynamicVal using
// the Go "==" operator and recording a refinement for an untyped
// unknown value would break existing code relying on that.
}
return &RefinementBuilder{v, marks, wip}
}
// RefineWith is a variant of Refine which uses callback functions instead of
// the builder pattern.
//
// The result is equivalent to passing the return value of [Value.Refine] to the
// first callback, and then continue passing the builder through any other
// callbacks in turn, and then calling [RefinementBuilder.NewValue] on the
// final result.
//
// The builder pattern approach of [Value.Refine] is more convenient for inline
// annotation of refinements when constructing a value, but this alternative
// approach may be more convenient when applying pre-defined collections of
// refinements, or when refinements are defined separately from the values
// they will apply to.
//
// Each refiner callback should return the same pointer that it was given,
// typically after having mutated it using the [RefinementBuilder] methods.
// It's invalid to return a different builder.
func (v Value) RefineWith(refiners ...func(*RefinementBuilder) *RefinementBuilder) Value {
if len(refiners) == 0 {
return v
}
origBuilder := v.Refine()
builder := origBuilder
for _, refiner := range refiners {
builder = refiner(builder)
if builder != origBuilder {
panic("refiner callback returned a different builder")
}
}
return builder.NewValue()
}
// RefineNotNull is a shorthand for Value.Refine().NotNull().NewValue(), because
// declaring that a unknown value isn't null is by far the most common use of
// refinements.
func (v Value) RefineNotNull() Value {
return v.Refine().NotNull().NewValue()
}
// RefinementBuilder is a supporting type for the [Value.Refine] method,
// using the builder pattern to apply zero or more constraints before
// constructing a new value with all of those constraints applied.
//
// Most of the methods of this type return the same reciever to allow
// for method call chaining. End call chains with a call to
// [RefinementBuilder.NewValue] to obtain the newly-refined value.
type RefinementBuilder struct {
orig Value
marks ValueMarks
wip unknownValRefinement
}
func (b *RefinementBuilder) assertRefineable() {
if b.wip == nil {
panic(fmt.Sprintf("cannot refine a %#v value", b.orig.Type()))
}
}
// NotNull constrains the value as definitely not being null.
//
// NotNull is valid when refining values of the following types:
// - number, boolean, and string values
// - list, set, or map types of any element type
// - values of object types
// - values of collection types
// - values of capsule types
//
// When refining any other type this function will panic.
//
// In particular note that it is not valid to constrain an untyped value
// -- a value whose type is `cty.DynamicPseudoType` -- as being non-null.
// An unknown value of an unknown type is always completely unconstrained.
func (b *RefinementBuilder) NotNull() *RefinementBuilder {
b.assertRefineable()
if b.orig.IsKnown() && b.orig.IsNull() {
panic("refining null value as non-null")
}
if b.wip.null() == tristateTrue {
panic("refining null value as non-null")
}
b.wip.setNull(tristateFalse)
return b
}
// Null constrains the value as definitely null.
//
// Null is valid for the same types as [RefinementBuilder.NotNull].
// When refining any other type this function will panic.
//
// Explicitly cnstraining a value to be null is strange because that suggests
// that the caller does actually know the value -- there is only one null
// value for each type constraint -- but this is here for symmetry with the
// fact that a [ValueRange] can also represent that a value is definitely null.
func (b *RefinementBuilder) Null() *RefinementBuilder {
b.assertRefineable()
if b.orig.IsKnown() && !b.orig.IsNull() {
panic("refining non-null value as null")
}
if b.wip.null() == tristateFalse {
panic("refining non-null value as null")
}
b.wip.setNull(tristateTrue)
return b
}
// NumericRange constrains the upper and/or lower bounds of a number value,
// or panics if this builder is not refining a number value.
//
// The two given values are interpreted as inclusive bounds and either one
// may be an unknown number if only one of the two bounds is currently known.
// If either of the given values is not a non-null number value then this
// function will panic.
func (b *RefinementBuilder) NumberRangeInclusive(min, max Value) *RefinementBuilder {
return b.NumberRangeLowerBound(min, true).NumberRangeUpperBound(max, true)
}
// NumberRangeLowerBound constraints the lower bound of a number value, or
// panics if this builder is not refining a number value.
func (b *RefinementBuilder) NumberRangeLowerBound(min Value, inclusive bool) *RefinementBuilder {
b.assertRefineable()
wip, ok := b.wip.(*refinementNumber)
if !ok {
panic(fmt.Sprintf("cannot refine numeric bounds for a %#v value", b.orig.Type()))
}
if !min.IsKnown() {
// Nothing to do if the lower bound is unknown.
return b
}
if min.IsNull() {
panic("number range lower bound must not be null")
}
if inclusive {
if gt := min.GreaterThan(b.orig); gt.IsKnown() && gt.True() {
panic(fmt.Sprintf("refining %#v to be >= %#v", b.orig, min))
}
} else {
if gt := min.GreaterThanOrEqualTo(b.orig); gt.IsKnown() && gt.True() {
panic(fmt.Sprintf("refining %#v to be > %#v", b.orig, min))
}
}
if wip.min != NilVal {
var ok Value
if inclusive && !wip.minInc {
ok = min.GreaterThan(wip.min)
} else {
ok = min.GreaterThanOrEqualTo(wip.min)
}
if ok.IsKnown() && ok.False() {
return b // Our existing refinement is more constrained
}
}
if min != NegativeInfinity {
wip.min = min
wip.minInc = inclusive
}
wip.assertConsistentBounds()
return b
}
// NumberRangeUpperBound constraints the upper bound of a number value, or
// panics if this builder is not refining a number value.
func (b *RefinementBuilder) NumberRangeUpperBound(max Value, inclusive bool) *RefinementBuilder {
b.assertRefineable()
wip, ok := b.wip.(*refinementNumber)
if !ok {
panic(fmt.Sprintf("cannot refine numeric bounds for a %#v value", b.orig.Type()))
}
if !max.IsKnown() {
// Nothing to do if the upper bound is unknown.
return b
}
if max.IsNull() {
panic("number range upper bound must not be null")
}
if inclusive {
if lt := max.LessThan(b.orig); lt.IsKnown() && lt.True() {
panic(fmt.Sprintf("refining %#v to be <= %#v", b.orig, max))
}
} else {
if lt := max.LessThanOrEqualTo(b.orig); lt.IsKnown() && lt.True() {
panic(fmt.Sprintf("refining %#v to be < %#v", b.orig, max))
}
}
if wip.max != NilVal {
var ok Value
if inclusive && !wip.maxInc {
ok = max.LessThan(wip.max)
} else {
ok = max.LessThanOrEqualTo(wip.max)
}
if ok.IsKnown() && ok.False() {
return b // Our existing refinement is more constrained
}
}
if max != PositiveInfinity {
wip.max = max
wip.maxInc = inclusive
}
wip.assertConsistentBounds()
return b
}
// CollectionLengthLowerBound constrains the lower bound of the length of a
// collection value, or panics if this builder is not refining a collection
// value.
func (b *RefinementBuilder) CollectionLengthLowerBound(min int) *RefinementBuilder {
b.assertRefineable()
wip, ok := b.wip.(*refinementCollection)
if !ok {
panic(fmt.Sprintf("cannot refine collection length bounds for a %#v value", b.orig.Type()))
}
minVal := NumberIntVal(int64(min))
if b.orig.IsKnown() {
realLen := b.orig.Length()
if gt := minVal.GreaterThan(realLen); gt.IsKnown() && gt.True() {
panic(fmt.Sprintf("refining collection of length %#v with lower bound %#v", realLen, min))
}
}
if wip.minLen > min {
return b // Our existing refinement is more constrained
}
wip.minLen = min
wip.assertConsistentLengthBounds()
return b
}
// CollectionLengthUpperBound constrains the upper bound of the length of a
// collection value, or panics if this builder is not refining a collection
// value.
//
// The upper bound must be a known, non-null number or this function will
// panic.
func (b *RefinementBuilder) CollectionLengthUpperBound(max int) *RefinementBuilder {
b.assertRefineable()
wip, ok := b.wip.(*refinementCollection)
if !ok {
panic(fmt.Sprintf("cannot refine collection length bounds for a %#v value", b.orig.Type()))
}
if b.orig.IsKnown() {
maxVal := NumberIntVal(int64(max))
realLen := b.orig.Length()
if lt := maxVal.LessThan(realLen); lt.IsKnown() && lt.True() {
panic(fmt.Sprintf("refining collection of length %#v with upper bound %#v", realLen, max))
}
}
if wip.maxLen < max {
return b // Our existing refinement is more constrained
}
wip.maxLen = max
wip.assertConsistentLengthBounds()
return b
}
// CollectionLength is a shorthand for passing the same length to both
// [CollectionLengthLowerBound] and [CollectionLengthUpperBound].
//
// A collection with a refined length with equal bounds can sometimes collapse
// to a known value. Refining to length zero always produces a known value.
// The behavior for other lengths varies by collection type kind.
//
// If the unknown value is of a set type, it's only valid to use this method
// if the caller knows that there will be the given number of _unique_ values
// in the set. If any values might potentially coalesce together once known,
// use [CollectionLengthUpperBound] instead.
func (b *RefinementBuilder) CollectionLength(length int) *RefinementBuilder {
return b.CollectionLengthLowerBound(length).CollectionLengthUpperBound(length)
}
// StringPrefix constrains the prefix of a string value, or panics if this
// builder is not refining a string value.
//
// The given prefix will be Unicode normalized in the same way that a
// cty.StringVal would be.
//
// Due to Unicode normalization and grapheme cluster rules, appending new
// characters to a string can change the meaning of earlier characters.
// StringPrefix may discard one or more characters from the end of the given
// prefix to avoid that problem.
//
// Although cty cannot check this automatically, applications should avoid
// relying on the discarding of the suffix for correctness. For example, if the
// prefix ends with an emoji base character then StringPrefix will discard it
// in case subsequent characters include emoji modifiers, but it's still
// incorrect for the final string to use an entirely different base character.
//
// Applications which fully control the final result and can guarantee the
// subsequent characters will not combine with the prefix may be able to use
// [RefinementBuilder.StringPrefixFull] instead, after carefully reviewing
// the constraints described in its documentation.
func (b *RefinementBuilder) StringPrefix(prefix string) *RefinementBuilder {
return b.StringPrefixFull(ctystrings.SafeKnownPrefix(prefix))
}
// StringPrefixFull is a variant of StringPrefix that will never shorten the
// given prefix to take into account the possibility of the next character
// combining with the end of the prefix.
//
// Applications which fully control the subsequent characters can use this
// as long as they guarantee that the characters added later cannot possibly
// combine with characters at the end of the prefix to form a single grapheme
// cluster. For example, it would be unsafe to use the full prefix "hello" if
// there is any chance that the final string will add a combining diacritic
// character after the "o", because that would then change the final character.
//
// Use [RefinementBuilder.StringPrefix] instead if an application cannot fully
// control the final result to avoid violating this rule.
func (b *RefinementBuilder) StringPrefixFull(prefix string) *RefinementBuilder {
b.assertRefineable()
wip, ok := b.wip.(*refinementString)
if !ok {
panic(fmt.Sprintf("cannot refine string prefix for a %#v value", b.orig.Type()))
}
// We must apply the same Unicode processing we'd normally use for a
// cty string so that the prefix will be comparable.
prefix = NormalizeString(prefix)
// If we have a known string value then the given prefix must actually
// match it.
if b.orig.IsKnown() && !b.orig.IsNull() {
have := b.orig.AsString()
matchLen := len(have)
if l := len(prefix); l < matchLen {
matchLen = l
}
have = have[:matchLen]
new := prefix[:matchLen]
if have != new {
panic("refined prefix is inconsistent with known value")
}
}
// If we already have a refined prefix then the overlapping parts of that
// and the new prefix must match.
{
matchLen := len(wip.prefix)
if l := len(prefix); l < matchLen {
matchLen = l
}
have := wip.prefix[:matchLen]
new := prefix[:matchLen]
if have != new {
panic("refined prefix is inconsistent with previous refined prefix")
}
}
// We'll only save the new prefix if it's longer than the one we already
// had.
if len(prefix) > len(wip.prefix) {
wip.prefix = prefix
}
return b
}
// NewValue completes the refinement process by constructing a new value
// that is guaranteed to meet all of the previously-specified refinements.
//
// If the original value being refined was known then the result is exactly
// that value, because otherwise the previous refinement calls would have
// panicked reporting the refinements as invalid for the value.
//
// If the original value was unknown then the result is typically also unknown
// but may have additional refinements compared to the original. If the applied
// refinements have reduced the range to a single exact value then the result
// might be that known value.
func (b *RefinementBuilder) NewValue() (ret Value) {
defer func() {
// Regardless of how we return, the new value should have the same
// marks as our original value.
ret = ret.WithMarks(b.marks)
}()
if b.orig.IsKnown() {
return b.orig
}
// We have a few cases where the value has been refined enough that we now
// know exactly what the value is, or at least we can produce a more
// detailed approximation of it.
switch b.wip.null() {
case tristateTrue:
// There is only one null value of each type so this is now known.
return NullVal(b.orig.Type())
case tristateFalse:
// If we know it's definitely not null then we might have enough
// information to construct a known, non-null value.
if rfn, ok := b.wip.(*refinementNumber); ok {
// If both bounds are inclusive and equal then our value can
// only be the same number as the bounds.
if rfn.maxInc && rfn.minInc {
if rfn.min != NilVal && rfn.max != NilVal {
eq := rfn.min.Equals(rfn.max)
if eq.IsKnown() && eq.True() {
return rfn.min
}
}
}
} else if rfn, ok := b.wip.(*refinementCollection); ok {
// If both of the bounds are equal then we know the length is
// the same number as the bounds.
if rfn.minLen == rfn.maxLen {
knownLen := rfn.minLen
ty := b.orig.Type()
if knownLen == 0 {
// If we know the length is zero then we can construct
// a known value of any collection kind.
switch {
case ty.IsListType():
return ListValEmpty(ty.ElementType())
case ty.IsSetType():
return SetValEmpty(ty.ElementType())
case ty.IsMapType():
return MapValEmpty(ty.ElementType())
}
} else if ty.IsListType() {
// If we know the length of the list then we can
// create a known list with unknown elements instead
// of a wholly-unknown list.
elems := make([]Value, knownLen)
unk := UnknownVal(ty.ElementType())
for i := range elems {
elems[i] = unk
}
return ListVal(elems)
} else if ty.IsSetType() && knownLen == 1 {
// If we know we have a one-element set then we
// know the one element can't possibly coalesce with
// anything else and so we can create a known set with
// an unknown element.
return SetVal([]Value{UnknownVal(ty.ElementType())})
}
}
}
}
return Value{
ty: b.orig.ty,
v: &unknownType{refinement: b.wip},
}
}
// unknownValRefinment is an interface pretending to be a sum type representing
// the different kinds of unknown value refinements we support for different
// types of value.
type unknownValRefinement interface {
unknownValRefinementSigil()
copy() unknownValRefinement
null() tristateBool
setNull(tristateBool)
rawEqual(other unknownValRefinement) bool
GoString() string
}
type refinementString struct {
refinementNullable
prefix string
}
func (r *refinementString) unknownValRefinementSigil() {}
func (r *refinementString) copy() unknownValRefinement {
ret := *r
// Everything in refinementString is immutable, so a shallow copy is sufficient.
return &ret
}
func (r *refinementString) rawEqual(other unknownValRefinement) bool {
{
other, ok := other.(*refinementString)
if !ok {
return false
}
return (r.refinementNullable.rawEqual(&other.refinementNullable) &&
r.prefix == other.prefix)
}
}
func (r *refinementString) GoString() string {
var b strings.Builder
b.WriteString(r.refinementNullable.GoString())
if r.prefix != "" {
fmt.Fprintf(&b, ".StringPrefixFull(%q)", r.prefix)
}
return b.String()
}
type refinementNumber struct {
refinementNullable
min, max Value
minInc, maxInc bool
}
func (r *refinementNumber) unknownValRefinementSigil() {}
func (r *refinementNumber) copy() unknownValRefinement {
ret := *r
// Everything in refinementNumber is immutable, so a shallow copy is sufficient.
return &ret
}
func (r *refinementNumber) rawEqual(other unknownValRefinement) bool {
{
other, ok := other.(*refinementNumber)
if !ok {
return false
}
return (r.refinementNullable.rawEqual(&other.refinementNullable) &&
r.min.RawEquals(other.min) &&
r.max.RawEquals(other.max) &&
r.minInc == other.minInc &&
r.maxInc == other.maxInc)
}
}
func (r *refinementNumber) GoString() string {
var b strings.Builder
b.WriteString(r.refinementNullable.GoString())
if r.min != NilVal && r.min != NegativeInfinity {
fmt.Fprintf(&b, ".NumberLowerBound(%#v, %t)", r.min, r.minInc)
}
if r.max != NilVal && r.max != PositiveInfinity {
fmt.Fprintf(&b, ".NumberUpperBound(%#v, %t)", r.max, r.maxInc)
}
return b.String()
}
func (r *refinementNumber) assertConsistentBounds() {
if r.min == NilVal || r.max == NilVal {
return // If only one bound is constrained then there's nothing to be inconsistent with
}
var ok Value
if r.minInc != r.maxInc {
ok = r.min.LessThan(r.max)
} else {
ok = r.min.LessThanOrEqualTo(r.max)
}
if ok.IsKnown() && ok.False() {
panic(fmt.Sprintf("number lower bound %#v is greater than upper bound %#v", r.min, r.max))
}
}
type refinementCollection struct {
refinementNullable
minLen, maxLen int
}
func (r *refinementCollection) unknownValRefinementSigil() {}
func (r *refinementCollection) copy() unknownValRefinement {
ret := *r
// Everything in refinementCollection is immutable, so a shallow copy is sufficient.
return &ret
}
func (r *refinementCollection) rawEqual(other unknownValRefinement) bool {
{
other, ok := other.(*refinementCollection)
if !ok {
return false
}
return (r.refinementNullable.rawEqual(&other.refinementNullable) &&
r.minLen == other.minLen &&
r.maxLen == other.maxLen)
}
}
func (r *refinementCollection) GoString() string {
var b strings.Builder
b.WriteString(r.refinementNullable.GoString())
if r.minLen != 0 {
fmt.Fprintf(&b, ".CollectionLengthLowerBound(%d)", r.minLen)
}
if r.maxLen != math.MaxInt {
fmt.Fprintf(&b, ".CollectionLengthUpperBound(%d)", r.maxLen)
}
return b.String()
}
func (r *refinementCollection) assertConsistentLengthBounds() {
if r.maxLen < r.minLen {
panic(fmt.Sprintf("collection length upper bound %d is less than lower bound %d", r.maxLen, r.minLen))
}
}
type refinementNullable struct {
isNull tristateBool
}
func (r *refinementNullable) unknownValRefinementSigil() {}
func (r *refinementNullable) copy() unknownValRefinement {
ret := *r
// Everything in refinementJustNull is immutable, so a shallow copy is sufficient.
return &ret
}
func (r *refinementNullable) null() tristateBool {
return r.isNull
}
func (r *refinementNullable) setNull(v tristateBool) {
r.isNull = v
}
func (r *refinementNullable) rawEqual(other unknownValRefinement) bool {
{
other, ok := other.(*refinementNullable)
if !ok {
return false
}
return r.isNull == other.isNull
}
}
func (r *refinementNullable) GoString() string {
switch r.isNull {
case tristateFalse:
return ".NotNull()"
case tristateTrue:
return ".Null()"
default:
return ""
}
}
type tristateBool rune
const tristateTrue tristateBool = 'T'
const tristateFalse tristateBool = 'F'
const tristateUnknown tristateBool = 0

143
vendor/github.com/zclconf/go-cty/cty/value.go generated vendored Normal file
View File

@@ -0,0 +1,143 @@
package cty
// Value represents a value of a particular type, and is the interface by
// which operations are executed on typed values.
//
// Value has two different classes of method. Operation methods stay entirely
// within the type system (methods accept and return Value instances) and
// are intended for use in implementing a language in terms of cty, while
// integration methods either enter or leave the type system, working with
// native Go values. Operation methods are guaranteed to support all of the
// expected short-circuit behavior for unknown and dynamic values, while
// integration methods may not.
//
// The philosophy for the operations API is that it's the caller's
// responsibility to ensure that the given types and values satisfy the
// specified invariants during a separate type check, so that the caller is
// able to return errors to its user from the application's own perspective.
//
// Consequently the design of these methods assumes such checks have already
// been done and panics if any invariants turn out not to be satisfied. These
// panic errors are not intended to be handled, but rather indicate a bug in
// the calling application that should be fixed with more checks prior to
// executing operations.
//
// A related consequence of this philosophy is that no automatic type
// conversions are done. If a method specifies that its argument must be
// number then it's the caller's responsibility to do that conversion before
// the call, thus allowing the application to have more constrained conversion
// rules than are offered by the built-in converter where necessary.
type Value struct {
ty Type
v interface{}
}
// Type returns the type of the value.
func (val Value) Type() Type {
return val.ty
}
// IsKnown returns true if the value is known. That is, if it is not
// the result of the unknown value constructor Unknown(...), and is not
// the result of an operation on another unknown value.
//
// Unknown values are only produced either directly or as a result of
// operating on other unknown values, and so an application that never
// introduces Unknown values can be guaranteed to never receive any either.
func (val Value) IsKnown() bool {
if val.IsMarked() {
return val.unmarkForce().IsKnown()
}
_, unknown := val.v.(*unknownType)
return !unknown
}
// IsNull returns true if the value is null. Values of any type can be
// null, but any operations on a null value will panic. No operation ever
// produces null, so an application that never introduces Null values can
// be guaranteed to never receive any either.
func (val Value) IsNull() bool {
if val.IsMarked() {
return val.unmarkForce().IsNull()
}
return val.v == nil
}
// NilVal is an invalid Value that can be used as a placeholder when returning
// with an error from a function that returns (Value, error).
//
// NilVal is *not* a valid error and so no operations may be performed on it.
// Any attempt to use it will result in a panic.
//
// This should not be confused with the idea of a Null value, as returned by
// NullVal. NilVal is a nil within the *Go* type system, and is invalid in
// the cty type system. Null values *do* exist in the cty type system.
var NilVal = Value{
ty: Type{typeImpl: nil},
v: nil,
}
// IsWhollyKnown is an extension of IsKnown that also recursively checks
// inside collections and structures to see if there are any nested unknown
// values.
func (val Value) IsWhollyKnown() bool {
if val.IsMarked() {
return val.unmarkForce().IsWhollyKnown()
}
if !val.IsKnown() {
return false
}
if val.IsNull() {
// Can't recurse into a null, so we're done
return true
}
switch {
case val.CanIterateElements():
for it := val.ElementIterator(); it.Next(); {
_, ev := it.Element()
if !ev.IsWhollyKnown() {
return false
}
}
return true
default:
return true
}
}
// HasWhollyKnownType checks if the value is dynamic, or contains any nested
// DynamicVal. This implies that both the value is not known, and the final
// type may change.
func (val Value) HasWhollyKnownType() bool {
// a null dynamic type is known
if val.IsNull() {
return true
}
// an unknown DynamicPseudoType is a DynamicVal, but we don't want to
// check that value for equality here, since this method is used within the
// equality check.
if !val.IsKnown() && val.ty == DynamicPseudoType {
return false
}
if val.CanIterateElements() {
// if the value is not known, then we can look directly at the internal
// types
if !val.IsKnown() {
return !val.ty.HasDynamicTypes()
}
for it := val.ElementIterator(); it.Next(); {
_, ev := it.Element()
if !ev.HasWhollyKnownType() {
return false
}
}
}
return true
}

366
vendor/github.com/zclconf/go-cty/cty/value_init.go generated vendored Normal file
View File

@@ -0,0 +1,366 @@
package cty
import (
"fmt"
"math/big"
"reflect"
"github.com/zclconf/go-cty/cty/ctystrings"
"github.com/zclconf/go-cty/cty/set"
)
// BoolVal returns a Value of type Number whose internal value is the given
// bool.
func BoolVal(v bool) Value {
return Value{
ty: Bool,
v: v,
}
}
// NumberVal returns a Value of type Number whose internal value is the given
// big.Float. The returned value becomes the owner of the big.Float object,
// and so it's forbidden for the caller to mutate the object after it's
// wrapped in this way.
func NumberVal(v *big.Float) Value {
return Value{
ty: Number,
v: v,
}
}
// ParseNumberVal returns a Value of type number produced by parsing the given
// string as a decimal real number. To ensure that two identical strings will
// always produce an equal number, always use this function to derive a number
// from a string; it will ensure that the precision and rounding mode for the
// internal big decimal is configured in a consistent way.
//
// If the given string cannot be parsed as a number, the returned error has
// the message "a number is required", making it suitable to return to an
// end-user to signal a type conversion error.
//
// If the given string contains a number that becomes a recurring fraction
// when expressed in binary then it will be truncated to have a 512-bit
// mantissa. Note that this is a higher precision than that of a float64,
// so coverting the same decimal number first to float64 and then calling
// NumberFloatVal will not produce an equal result; the conversion first
// to float64 will round the mantissa to fewer than 512 bits.
func ParseNumberVal(s string) (Value, error) {
// Base 10, precision 512, and rounding to nearest even is the standard
// way to handle numbers arriving as strings.
f, _, err := big.ParseFloat(s, 10, 512, big.ToNearestEven)
if err != nil {
return NilVal, fmt.Errorf("a number is required")
}
return NumberVal(f), nil
}
// MustParseNumberVal is like ParseNumberVal but it will panic in case of any
// error. It can be used during initialization or any other situation where
// the given string is a constant or otherwise known to be correct by the
// caller.
func MustParseNumberVal(s string) Value {
ret, err := ParseNumberVal(s)
if err != nil {
panic(err)
}
return ret
}
// NumberIntVal returns a Value of type Number whose internal value is equal
// to the given integer.
func NumberIntVal(v int64) Value {
return NumberVal(new(big.Float).SetInt64(v))
}
// NumberUIntVal returns a Value of type Number whose internal value is equal
// to the given unsigned integer.
func NumberUIntVal(v uint64) Value {
return NumberVal(new(big.Float).SetUint64(v))
}
// NumberFloatVal returns a Value of type Number whose internal value is
// equal to the given float.
func NumberFloatVal(v float64) Value {
return NumberVal(new(big.Float).SetFloat64(v))
}
// StringVal returns a Value of type String whose internal value is the
// given string.
//
// Strings must be UTF-8 encoded sequences of valid unicode codepoints, and
// they are NFC-normalized on entry into the world of cty values.
//
// If the given string is not valid UTF-8 then behavior of string operations
// is undefined.
func StringVal(v string) Value {
return Value{
ty: String,
v: NormalizeString(v),
}
}
// NormalizeString applies the same normalization that cty applies when
// constructing string values.
//
// A return value from this function can be meaningfully compared byte-for-byte
// with a Value.AsString result.
func NormalizeString(s string) string {
return ctystrings.Normalize(s)
}
// ObjectVal returns a Value of an object type whose structure is defined
// by the key names and value types in the given map.
func ObjectVal(attrs map[string]Value) Value {
attrTypes := make(map[string]Type, len(attrs))
attrVals := make(map[string]interface{}, len(attrs))
for attr, val := range attrs {
attr = NormalizeString(attr)
attrTypes[attr] = val.ty
attrVals[attr] = val.v
}
return Value{
ty: Object(attrTypes),
v: attrVals,
}
}
// TupleVal returns a Value of a tuple type whose element types are
// defined by the value types in the given slice.
func TupleVal(elems []Value) Value {
elemTypes := make([]Type, len(elems))
elemVals := make([]interface{}, len(elems))
for i, val := range elems {
elemTypes[i] = val.ty
elemVals[i] = val.v
}
return Value{
ty: Tuple(elemTypes),
v: elemVals,
}
}
// ListVal returns a Value of list type whose element type is defined by
// the types of the given values, which must be homogenous.
//
// If the types are not all consistent (aside from elements that are of the
// dynamic pseudo-type) then this function will panic. It will panic also
// if the given list is empty, since then the element type cannot be inferred.
// (See also ListValEmpty.)
func ListVal(vals []Value) Value {
if len(vals) == 0 {
panic("must not call ListVal with empty slice")
}
elementType := DynamicPseudoType
rawList := make([]interface{}, len(vals))
for i, val := range vals {
if elementType == DynamicPseudoType {
elementType = val.ty
} else if val.ty != DynamicPseudoType && !elementType.Equals(val.ty) {
panic(fmt.Errorf(
"inconsistent list element types (%#v then %#v)",
elementType, val.ty,
))
}
rawList[i] = val.v
}
return Value{
ty: List(elementType),
v: rawList,
}
}
// ListValEmpty returns an empty list of the given element type.
func ListValEmpty(element Type) Value {
return Value{
ty: List(element),
v: []interface{}{},
}
}
// CanListVal returns false if the given Values can not be coalesced
// into a single List due to inconsistent element types.
func CanListVal(vals []Value) bool {
elementType := DynamicPseudoType
for _, val := range vals {
if elementType == DynamicPseudoType {
elementType = val.ty
} else if val.ty != DynamicPseudoType && !elementType.Equals(val.ty) {
return false
}
}
return true
}
// MapVal returns a Value of a map type whose element type is defined by
// the types of the given values, which must be homogenous.
//
// If the types are not all consistent (aside from elements that are of the
// dynamic pseudo-type) then this function will panic. It will panic also
// if the given map is empty, since then the element type cannot be inferred.
// (See also MapValEmpty.)
func MapVal(vals map[string]Value) Value {
if len(vals) == 0 {
panic("must not call MapVal with empty map")
}
elementType := DynamicPseudoType
rawMap := make(map[string]interface{}, len(vals))
for key, val := range vals {
if elementType == DynamicPseudoType {
elementType = val.ty
} else if val.ty != DynamicPseudoType && !elementType.Equals(val.ty) {
panic(fmt.Errorf(
"inconsistent map element types (%#v then %#v)",
elementType, val.ty,
))
}
rawMap[NormalizeString(key)] = val.v
}
return Value{
ty: Map(elementType),
v: rawMap,
}
}
// MapValEmpty returns an empty map of the given element type.
func MapValEmpty(element Type) Value {
return Value{
ty: Map(element),
v: map[string]interface{}{},
}
}
// CanMapVal returns false if the given Values can not be coalesced into a
// single Map due to inconsistent element types.
func CanMapVal(vals map[string]Value) bool {
elementType := DynamicPseudoType
for _, val := range vals {
if elementType == DynamicPseudoType {
elementType = val.ty
} else if val.ty != DynamicPseudoType && !elementType.Equals(val.ty) {
return false
}
}
return true
}
// SetVal returns a Value of set type whose element type is defined by
// the types of the given values, which must be homogenous.
//
// If the types are not all consistent (aside from elements that are of the
// dynamic pseudo-type) then this function will panic. It will panic also
// if the given list is empty, since then the element type cannot be inferred.
// (See also SetValEmpty.)
func SetVal(vals []Value) Value {
if len(vals) == 0 {
panic("must not call SetVal with empty slice")
}
elementType := DynamicPseudoType
rawList := make([]interface{}, len(vals))
var markSets []ValueMarks
for i, val := range vals {
if unmarkedVal, marks := val.UnmarkDeep(); len(marks) > 0 {
val = unmarkedVal
markSets = append(markSets, marks)
}
if elementType == DynamicPseudoType {
elementType = val.ty
} else if val.ty != DynamicPseudoType && !elementType.Equals(val.ty) {
panic(fmt.Errorf(
"inconsistent set element types (%#v then %#v)",
elementType, val.ty,
))
}
rawList[i] = val.v
}
rawVal := set.NewSetFromSlice(set.Rules[interface{}](setRules{elementType}), rawList)
return Value{
ty: Set(elementType),
v: rawVal,
}.WithMarks(markSets...)
}
// CanSetVal returns false if the given Values can not be coalesced
// into a single Set due to inconsistent element types.
func CanSetVal(vals []Value) bool {
elementType := DynamicPseudoType
var markSets []ValueMarks
for _, val := range vals {
if unmarkedVal, marks := val.UnmarkDeep(); len(marks) > 0 {
val = unmarkedVal
markSets = append(markSets, marks)
}
if elementType == DynamicPseudoType {
elementType = val.ty
} else if val.ty != DynamicPseudoType && !elementType.Equals(val.ty) {
return false
}
}
return true
}
// SetValFromValueSet returns a Value of set type based on an already-constructed
// ValueSet.
//
// The element type of the returned value is the element type of the given
// set.
func SetValFromValueSet(s ValueSet) Value {
ety := s.ElementType()
rawVal := s.s.Copy() // copy so caller can't mutate what we wrap
return Value{
ty: Set(ety),
v: rawVal,
}
}
// SetValEmpty returns an empty set of the given element type.
func SetValEmpty(element Type) Value {
return Value{
ty: Set(element),
v: set.NewSet(set.Rules[interface{}](setRules{element})),
}
}
// CapsuleVal creates a value of the given capsule type using the given
// wrapVal, which must be a pointer to a value of the capsule type's native
// type.
//
// This function will panic if the given type is not a capsule type, if
// the given wrapVal is not compatible with the given capsule type, or if
// wrapVal is not a pointer.
func CapsuleVal(ty Type, wrapVal interface{}) Value {
if !ty.IsCapsuleType() {
panic("not a capsule type")
}
wv := reflect.ValueOf(wrapVal)
if wv.Kind() != reflect.Ptr {
panic("wrapVal is not a pointer")
}
it := ty.typeImpl.(*capsuleType).GoType
if !wv.Type().Elem().AssignableTo(it) {
panic("wrapVal target is not compatible with the given capsule type")
}
return Value{
ty: ty,
v: wrapVal,
}
}

1502
vendor/github.com/zclconf/go-cty/cty/value_ops.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

408
vendor/github.com/zclconf/go-cty/cty/value_range.go generated vendored Normal file
View File

@@ -0,0 +1,408 @@
package cty
import (
"fmt"
"math"
"strings"
)
// Range returns an object that offers partial information about the range
// of the receiver.
//
// This is most relevant for unknown values, because it gives access to any
// optional additional constraints on the final value (specified by the source
// of the value using "refinements") beyond what we can assume from the value's
// type.
//
// Calling Range for a known value is a little strange, but it's supported by
// returning a [ValueRange] object that describes the exact value as closely
// as possible. Typically a caller should work directly with the exact value
// in that case, but some purposes might only need the level of detail
// offered by ranges and so can share code between both known and unknown
// values.
func (v Value) Range() ValueRange {
// For an unknown value we just use its own refinements.
if unk, isUnk := v.v.(*unknownType); isUnk {
refinement := unk.refinement
if refinement == nil {
// We'll generate an unconstrained refinement, just to
// simplify the code in ValueRange methods which can
// therefore assume that there's always a refinement.
refinement = &refinementNullable{isNull: tristateUnknown}
}
return ValueRange{v.Type(), refinement}
}
if v.IsNull() {
// If we know a value is null then we'll just report that,
// since no other refinements make sense for a definitely-null value.
return ValueRange{
v.Type(),
&refinementNullable{isNull: tristateTrue},
}
}
// For a known value we construct synthetic refinements that match
// the value, just as a convenience for callers that want to share
// codepaths between both known and unknown values.
ty := v.Type()
var synth unknownValRefinement
switch {
case ty == String:
synth = &refinementString{
prefix: v.AsString(),
}
case ty == Number:
synth = &refinementNumber{
min: v,
max: v,
minInc: true,
maxInc: true,
}
case ty.IsCollectionType():
if lenVal := v.Length(); lenVal.IsKnown() {
l, _ := lenVal.AsBigFloat().Int64()
synth = &refinementCollection{
minLen: int(l),
maxLen: int(l),
}
} else {
synth = &refinementCollection{
minLen: 0,
maxLen: math.MaxInt,
}
}
default:
// If we don't have anything else to say then we can at least
// guarantee that the value isn't null.
synth = &refinementNullable{}
}
// If we get down here then the value is definitely not null
synth.setNull(tristateFalse)
return ValueRange{ty, synth}
}
// ValueRange offers partial information about the range of a value.
//
// This is primarily interesting for unknown values, because it provides access
// to any additional known constraints (specified using "refinements") on the
// range of the value beyond what is represented by the value's type.
type ValueRange struct {
ty Type
raw unknownValRefinement
}
// TypeConstraint returns a type constraint describing the value's type as
// precisely as possible with the available information.
func (r ValueRange) TypeConstraint() Type {
return r.ty
}
// CouldBeNull returns true unless the value being described is definitely
// known to represent a non-null value.
func (r ValueRange) CouldBeNull() bool {
if r.raw == nil {
// A totally-unconstrained unknown value could be null
return true
}
return r.raw.null() != tristateFalse
}
// DefinitelyNotNull returns true if there are no null values in the range.
func (r ValueRange) DefinitelyNotNull() bool {
if r.raw == nil {
// A totally-unconstrained unknown value could be null
return false
}
return r.raw.null() == tristateFalse
}
// NumberLowerBound returns information about the lower bound of the range of
// a number value, or panics if the value is definitely not a number.
//
// If the value is nullable then the result represents the range of the number
// only if it turns out not to be null.
//
// The resulting value might itself be an unknown number if there is no
// known lower bound. In that case the "inclusive" flag is meaningless.
func (r ValueRange) NumberLowerBound() (min Value, inclusive bool) {
if r.ty == DynamicPseudoType {
// We don't even know if this is a number yet.
return UnknownVal(Number), false
}
if r.ty != Number {
panic(fmt.Sprintf("NumberLowerBound for %#v", r.ty))
}
if rfn, ok := r.raw.(*refinementNumber); ok && rfn.min != NilVal {
if !rfn.min.IsKnown() {
return NegativeInfinity, true
}
return rfn.min, rfn.minInc
}
return NegativeInfinity, false
}
// NumberUpperBound returns information about the upper bound of the range of
// a number value, or panics if the value is definitely not a number.
//
// If the value is nullable then the result represents the range of the number
// only if it turns out not to be null.
//
// The resulting value might itself be an unknown number if there is no
// known upper bound. In that case the "inclusive" flag is meaningless.
func (r ValueRange) NumberUpperBound() (max Value, inclusive bool) {
if r.ty == DynamicPseudoType {
// We don't even know if this is a number yet.
return UnknownVal(Number), false
}
if r.ty != Number {
panic(fmt.Sprintf("NumberUpperBound for %#v", r.ty))
}
if rfn, ok := r.raw.(*refinementNumber); ok && rfn.max != NilVal {
if !rfn.max.IsKnown() {
return PositiveInfinity, true
}
return rfn.max, rfn.maxInc
}
return PositiveInfinity, false
}
// StringPrefix returns a string that is guaranteed to be the prefix of
// the string value being described, or panics if the value is definitely not
// a string.
//
// If the value is nullable then the result represents the prefix of the string
// only if it turns out to not be null.
//
// If the resulting value is zero-length then the value could potentially be
// a string but it has no known prefix.
//
// cty.String values always contain normalized UTF-8 sequences; the result is
// also guaranteed to be a normalized UTF-8 sequence so the result also
// represents the exact bytes of the string value's prefix.
func (r ValueRange) StringPrefix() string {
if r.ty == DynamicPseudoType {
// We don't even know if this is a string yet.
return ""
}
if r.ty != String {
panic(fmt.Sprintf("StringPrefix for %#v", r.ty))
}
if rfn, ok := r.raw.(*refinementString); ok {
return rfn.prefix
}
return ""
}
// LengthLowerBound returns information about the lower bound of the length of
// a collection-typed value, or panics if the value is definitely not a
// collection.
//
// If the value is nullable then the result represents the range of the length
// only if the value turns out not to be null.
func (r ValueRange) LengthLowerBound() int {
if r.ty == DynamicPseudoType {
// We don't even know if this is a collection yet.
return 0
}
if !r.ty.IsCollectionType() {
panic(fmt.Sprintf("LengthLowerBound for %#v", r.ty))
}
if rfn, ok := r.raw.(*refinementCollection); ok {
return rfn.minLen
}
return 0
}
// LengthUpperBound returns information about the upper bound of the length of
// a collection-typed value, or panics if the value is definitely not a
// collection.
//
// If the value is nullable then the result represents the range of the length
// only if the value turns out not to be null.
//
// The resulting value might itself be an unknown number if there is no
// known upper bound. In that case the "inclusive" flag is meaningless.
func (r ValueRange) LengthUpperBound() int {
if r.ty == DynamicPseudoType {
// We don't even know if this is a collection yet.
return math.MaxInt
}
if !r.ty.IsCollectionType() {
panic(fmt.Sprintf("LengthUpperBound for %#v", r.ty))
}
if rfn, ok := r.raw.(*refinementCollection); ok {
return rfn.maxLen
}
return math.MaxInt
}
// Includes determines whether the given value is in the receiving range.
//
// It can return only three possible values:
// - [cty.True] if the range definitely includes the value
// - [cty.False] if the range definitely does not include the value
// - An unknown value of [cty.Bool] if there isn't enough information to decide.
//
// This function is not fully comprehensive: it may return an unknown value
// in some cases where a definitive value could be computed in principle, and
// those same situations may begin returning known values in later releases as
// the rules are refined to be more complete. Currently the rules focus mainly
// on answering [cty.False], because disproving membership tends to be more
// useful than proving membership.
func (r ValueRange) Includes(v Value) Value {
unknownResult := UnknownVal(Bool).RefineNotNull()
if r.raw.null() == tristateTrue {
if v.IsNull() {
return True
} else {
return False
}
}
if r.raw.null() == tristateFalse {
if v.IsNull() {
return False
}
// A definitely-not-null value could potentially match
// but we won't know until we do some more checks below.
}
// If our range includes both null and non-null values and the value is
// null then it's definitely in range.
if v.IsNull() {
return True
}
if len(v.Type().TestConformance(r.TypeConstraint())) != 0 {
// If the value doesn't conform to the type constraint then it's
// definitely not in the range.
return False
}
if v.Type() == DynamicPseudoType {
// If it's an unknown value of an unknown type then there's no
// further tests we can make.
return unknownResult
}
switch r.raw.(type) {
case *refinementString:
if v.IsKnown() {
prefix := r.StringPrefix()
got := v.AsString()
if !strings.HasPrefix(got, prefix) {
return False
}
}
case *refinementCollection:
lenVal := v.Length()
minLen := NumberIntVal(int64(r.LengthLowerBound()))
maxLen := NumberIntVal(int64(r.LengthUpperBound()))
if minOk := lenVal.GreaterThanOrEqualTo(minLen); minOk.IsKnown() && minOk.False() {
return False
}
if maxOk := lenVal.LessThanOrEqualTo(maxLen); maxOk.IsKnown() && maxOk.False() {
return False
}
case *refinementNumber:
minVal, minInc := r.NumberLowerBound()
maxVal, maxInc := r.NumberUpperBound()
var minOk, maxOk Value
if minInc {
minOk = v.GreaterThanOrEqualTo(minVal)
} else {
minOk = v.GreaterThan(minVal)
}
if maxInc {
maxOk = v.LessThanOrEqualTo(maxVal)
} else {
maxOk = v.LessThan(maxVal)
}
if minOk.IsKnown() && minOk.False() {
return False
}
if maxOk.IsKnown() && maxOk.False() {
return False
}
}
// If we fall out here then we don't have enough information to decide.
return unknownResult
}
// numericRangeArithmetic is a helper we use to calculate derived numeric ranges
// for arithmetic on refined numeric values.
//
// op must be a monotone operation. numericRangeArithmetic adapts that operation
// into the equivalent interval arithmetic operation.
//
// The result is a superset of the range of the given operation against the
// given input ranges, if it's possible to calculate that without encountering
// an invalid operation. Currently the result is inexact due to ignoring
// the inclusiveness of the input bounds and just always returning inclusive
// bounds.
func numericRangeArithmetic(op func(a, b Value) Value, a, b ValueRange) func(*RefinementBuilder) *RefinementBuilder {
wrapOp := func(a, b Value) (ret Value) {
// Our functions have various panicking edge cases involving incompatible
// uses of infinities. To keep things simple here we'll catch those
// and just return an unconstrained number.
defer func() {
if v := recover(); v != nil {
ret = UnknownVal(Number)
}
}()
return op(a, b)
}
return func(builder *RefinementBuilder) *RefinementBuilder {
aMin, _ := a.NumberLowerBound()
aMax, _ := a.NumberUpperBound()
bMin, _ := b.NumberLowerBound()
bMax, _ := b.NumberUpperBound()
v1 := wrapOp(aMin, bMin)
v2 := wrapOp(aMin, bMax)
v3 := wrapOp(aMax, bMin)
v4 := wrapOp(aMax, bMax)
newMin := mostNumberValue(Value.LessThan, v1, v2, v3, v4)
newMax := mostNumberValue(Value.GreaterThan, v1, v2, v3, v4)
if isInf := newMin.Equals(NegativeInfinity); isInf.IsKnown() && isInf.False() {
builder = builder.NumberRangeLowerBound(newMin, true)
}
if isInf := newMax.Equals(PositiveInfinity); isInf.IsKnown() && isInf.False() {
builder = builder.NumberRangeUpperBound(newMax, true)
}
return builder
}
}
func mostNumberValue(op func(i, j Value) Value, v1 Value, vN ...Value) Value {
r := v1
for _, v := range vN {
more := op(v, r)
if !more.IsKnown() {
return UnknownVal(Number)
}
if more.True() {
r = v
}
}
return r
}
// definitelyNotNull is a convenient helper for the common situation of checking
// whether a value could possibly be null.
//
// Returns true if the given value is either a known value that isn't null
// or an unknown value that has been refined to exclude null values from its
// range.
func definitelyNotNull(v Value) bool {
if v.IsKnown() {
return !v.IsNull()
}
return v.Range().DefinitelyNotNull()
}

238
vendor/github.com/zclconf/go-cty/cty/walk.go generated vendored Normal file
View File

@@ -0,0 +1,238 @@
package cty
// Walk visits all of the values in a possibly-complex structure, calling
// a given function for each value.
//
// For example, given a list of strings the callback would first be called
// with the whole list and then called once for each element of the list.
//
// The callback function may prevent recursive visits to child values by
// returning false. The callback function my halt the walk altogether by
// returning a non-nil error. If the returned error is about the element
// currently being visited, it is recommended to use the provided path
// value to produce a PathError describing that context.
//
// The path passed to the given function may not be used after that function
// returns, since its backing array is re-used for other calls.
func Walk(val Value, cb func(Path, Value) (bool, error)) error {
var path Path
return walk(path, val, cb)
}
func walk(path Path, val Value, cb func(Path, Value) (bool, error)) error {
deeper, err := cb(path, val)
if err != nil {
return err
}
if !deeper {
return nil
}
if val.IsNull() || !val.IsKnown() {
// Can't recurse into null or unknown values, regardless of type
return nil
}
// The callback already got a chance to see the mark in our
// call above, so can safely strip it off here in order to
// visit the child elements, which might still have their own marks.
rawVal, _ := val.Unmark()
ty := val.Type()
switch {
case ty.IsObjectType():
for it := rawVal.ElementIterator(); it.Next(); {
nameVal, av := it.Element()
path := append(path, GetAttrStep{
Name: nameVal.AsString(),
})
err := walk(path, av, cb)
if err != nil {
return err
}
}
case rawVal.CanIterateElements():
for it := rawVal.ElementIterator(); it.Next(); {
kv, ev := it.Element()
path := append(path, IndexStep{
Key: kv,
})
err := walk(path, ev, cb)
if err != nil {
return err
}
}
}
return nil
}
// Transformer is the interface used to optionally transform values in a
// possibly-complex structure. The Enter method is called before traversing
// through a given path, and the Exit method is called when traversal of a
// path is complete.
//
// Use Enter when you want to transform a complex value before traversal
// (preorder), and Exit when you want to transform a value after traversal
// (postorder).
//
// The path passed to the given function may not be used after that function
// returns, since its backing array is re-used for other calls.
type Transformer interface {
Enter(Path, Value) (Value, error)
Exit(Path, Value) (Value, error)
}
type postorderTransformer struct {
callback func(Path, Value) (Value, error)
}
func (t *postorderTransformer) Enter(p Path, v Value) (Value, error) {
return v, nil
}
func (t *postorderTransformer) Exit(p Path, v Value) (Value, error) {
return t.callback(p, v)
}
// Transform visits all of the values in a possibly-complex structure,
// calling a given function for each value which has an opportunity to
// replace that value.
//
// Unlike Walk, Transform visits child nodes first, so for a list of strings
// it would first visit the strings and then the _new_ list constructed
// from the transformed values of the list items.
//
// This is useful for creating the effect of being able to make deep mutations
// to a value even though values are immutable. However, it's the responsibility
// of the given function to preserve expected invariants, such as homogenity of
// element types in collections; this function can panic if such invariants
// are violated, just as if new values were constructed directly using the
// value constructor functions. An easy way to preserve invariants is to
// ensure that the transform function never changes the value type.
//
// The callback function may halt the walk altogether by
// returning a non-nil error. If the returned error is about the element
// currently being visited, it is recommended to use the provided path
// value to produce a PathError describing that context.
//
// The path passed to the given function may not be used after that function
// returns, since its backing array is re-used for other calls.
func Transform(val Value, cb func(Path, Value) (Value, error)) (Value, error) {
var path Path
return transform(path, val, &postorderTransformer{cb})
}
// TransformWithTransformer allows the caller to more closely control the
// traversal used for transformation. See the documentation for Transformer for
// more details.
func TransformWithTransformer(val Value, t Transformer) (Value, error) {
var path Path
return transform(path, val, t)
}
func transform(path Path, val Value, t Transformer) (Value, error) {
val, err := t.Enter(path, val)
if err != nil {
return DynamicVal, err
}
ty := val.Type()
var newVal Value
// We need to peel off any marks here so that we can dig around
// inside any collection values. We'll reapply these to any
// new collections we construct, but the transformer's Exit
// method gets the final say on what to do with those.
rawVal, marks := val.Unmark()
switch {
case val.IsNull() || !val.IsKnown():
// Can't recurse into null or unknown values, regardless of type
newVal = val
case ty.IsListType() || ty.IsSetType() || ty.IsTupleType():
l := rawVal.LengthInt()
switch l {
case 0:
// No deep transform for an empty sequence
newVal = val
default:
elems := make([]Value, 0, l)
for it := rawVal.ElementIterator(); it.Next(); {
kv, ev := it.Element()
path := append(path, IndexStep{
Key: kv,
})
newEv, err := transform(path, ev, t)
if err != nil {
return DynamicVal, err
}
elems = append(elems, newEv)
}
switch {
case ty.IsListType():
newVal = ListVal(elems).WithMarks(marks)
case ty.IsSetType():
newVal = SetVal(elems).WithMarks(marks)
case ty.IsTupleType():
newVal = TupleVal(elems).WithMarks(marks)
default:
panic("unknown sequence type") // should never happen because of the case we are in
}
}
case ty.IsMapType():
l := rawVal.LengthInt()
switch l {
case 0:
// No deep transform for an empty map
newVal = val
default:
elems := make(map[string]Value)
for it := rawVal.ElementIterator(); it.Next(); {
kv, ev := it.Element()
path := append(path, IndexStep{
Key: kv,
})
newEv, err := transform(path, ev, t)
if err != nil {
return DynamicVal, err
}
elems[kv.AsString()] = newEv
}
newVal = MapVal(elems).WithMarks(marks)
}
case ty.IsObjectType():
switch {
case ty.Equals(EmptyObject):
// No deep transform for an empty object
newVal = val
default:
atys := ty.AttributeTypes()
newAVs := make(map[string]Value)
for name := range atys {
av := val.GetAttr(name)
path := append(path, GetAttrStep{
Name: name,
})
newAV, err := transform(path, av, t)
if err != nil {
return DynamicVal, err
}
newAVs[name] = newAV
}
newVal = ObjectVal(newAVs).WithMarks(marks)
}
default:
newVal = val
}
newVal, err = t.Exit(path, newVal)
if err != nil {
return DynamicVal, err
}
return newVal, err
}