14 Commits

15 changed files with 426 additions and 135 deletions

View File

@@ -1,5 +1,8 @@
.PHONY: all
all:
.PHONY all:
all: build
.PHONY: build
build:
make -C src
mv src/golsky .
@@ -7,3 +10,8 @@ all:
clean:
make -C src clean
rm -f dump* rect*
.PHONY: profile
profile: build
./golsky -W 1500 -H 1500 -d --profile-file cpu.profile
go tool pprof --http localhost:8888 golsky cpu.profile

View File

@@ -82,17 +82,16 @@ Usage of ./golsky:
While it runs, there are a couple of commands you can use:
* left mouse click: set a cell to alife (also pauses the game)
* right mouse click: set a cell to dead
* space: pause or resume the game
* while game is paused: press n to forward one step
* page up: speed up
* page down: slow down
* Mouse wheel: zoom in or out
* move mouse while left mouse button pressed: move canvas
* i: enter "insert" (draw) mode: use left mouse to set cells alife and right
button to dead. Leave with "space". While in insert mode, use middle mouse
button to drag grid.
* i: enter "insert" (draw) mode: use left mouse to toggle cells alife state.
Leave with insert mode "space". While in insert mode, use middle mouse
button to drag the grid.
* r: reset to 1:1 zoom
* escape: open menu
* s: save game state to file (can be loaded with -l)

View File

@@ -120,7 +120,7 @@ func removeWhitespace(input string) string {
}
// Store a grid to an RLE file
func StoreGridToRLE(grid [][]bool, filename, rule string, width, height int) error {
func StoreGridToRLE(grid [][]uint8, filename, rule string, width, height int) error {
fd, err := os.Create(filename)
if err != nil {
return err
@@ -132,7 +132,7 @@ func StoreGridToRLE(grid [][]bool, filename, rule string, width, height int) err
line := ""
for x := 0; x < width; x++ {
char := "b"
if grid[y][x] {
if grid[y][x] == 1 {
char = "o"
}

View File

@@ -43,16 +43,16 @@ type Config struct {
}
const (
VERSION = "v0.0.8"
Alive = true
Dead = false
VERSION = "v0.0.9"
Alive = 1
Dead = 0
DEFAULT_GRID_WIDTH = 600
DEFAULT_GRID_HEIGHT = 400
DEFAULT_CELLSIZE = 4
DEFAULT_ZOOMFACTOR = 400
DEFAULT_GEOM = "640x384"
DEFAULT_THEME = "standard" // "light" // inverse => "dark"
DEFAULT_THEME = "standard"
)
const KEYBINDINGS string = `
@@ -62,9 +62,9 @@ const KEYBINDINGS string = `
- PAGE DOWN: slow down
- MOUSE WHEEL: zoom in or out
- LEFT MOUSE BUTTON: use to drag canvas, keep clicked and move mouse
- I: enter "insert" (draw) mode: use left mouse to set cells alife and right
button to dead. Leave with "space". While in insert mode, use middle mouse
button to drag grid.
- I: enter "insert" (draw) mode: use left mouse to toggle a cells alife state.
Leave with insert mode with "space". While in insert mode, use middle mouse
button to drag the grid.
- R: reset to 1:1 zoom
- ESCAPE: open menu, o: open options menu
- S: save game state to file (can be loaded with -l)

View File

@@ -12,35 +12,115 @@ import (
"github.com/tlinden/golsky/rle"
)
// func (cell *Cell) Count() uint8 {
// var count uint8
// for idx := 0; idx < cell.NeighborCount; idx++ {
// count += cell.Neighbors[idx].State
// }
// return count
// }
type Neighbor struct {
X, Y int
}
type Grid struct {
Data [][]bool
Width, Height, Density int
Empty bool
Data [][]uint8
NeighborCount [][]int
Neighbors [][][]Neighbor
Empty bool
Config *Config
}
// Create new empty grid and allocate Data according to provided dimensions
func NewGrid(width, height, density int, empty bool) *Grid {
func NewGrid(config *Config) *Grid {
grid := &Grid{
Height: height,
Width: width,
Density: density,
Data: make([][]bool, height),
Empty: empty,
Data: make([][]uint8, config.Height),
NeighborCount: make([][]int, config.Height),
Neighbors: make([][][]Neighbor, config.Height),
Empty: config.Empty,
Config: config,
}
for y := 0; y < height; y++ {
grid.Data[y] = make([]bool, width)
// first setup the cells
for y := 0; y < config.Height; y++ {
grid.Data[y] = make([]uint8, config.Width)
grid.Neighbors[y] = make([][]Neighbor, config.Width)
grid.NeighborCount[y] = make([]int, config.Width)
for x := 0; x < config.Width; x++ {
grid.Data[y][x] = 0
}
}
// in a second pass, collect positions to the neighbors of each cell
for y := 0; y < config.Height; y++ {
for x := 0; x < config.Width; x++ {
grid.SetupNeighbors(x, y)
}
}
return grid
}
func (grid *Grid) SetupNeighbors(x, y int) {
idx := 0
var neighbors []Neighbor
for nbgY := -1; nbgY < 2; nbgY++ {
for nbgX := -1; nbgX < 2; nbgX++ {
var col, row int
if grid.Config.Wrap {
// In wrap mode we look at all the 8 neighbors surrounding us.
// In case we are on an edge we'll look at the neighbor on the
// other side of the grid, thus wrapping lookahead around
// using the mod() function.
col = (x + nbgX + grid.Config.Width) % grid.Config.Width
row = (y + nbgY + grid.Config.Height) % grid.Config.Height
} else {
// In traditional grid mode the edges are deadly
if x+nbgX < 0 || x+nbgX >= grid.Config.Width || y+nbgY < 0 || y+nbgY >= grid.Config.Height {
continue
}
col = x + nbgX
row = y + nbgY
}
if col == x && row == y {
continue
}
neighbors = append(neighbors, Neighbor{X: col, Y: row})
grid.NeighborCount[y][x]++
idx++
}
}
grid.Neighbors[y][x] = neighbors
}
// count the living neighbors of a cell
func (grid *Grid) CountNeighbors(x, y int) uint8 {
var count uint8
for idx := 0; idx < grid.NeighborCount[y][x]; idx++ {
count += grid.Data[grid.Neighbors[y][x][idx].Y][grid.Neighbors[y][x][idx].X]
}
return count
}
// Create a new 1:1 instance
func (grid *Grid) Clone() *Grid {
newgrid := &Grid{}
newgrid.Width = grid.Width
newgrid.Height = grid.Height
newgrid.Config = grid.Config
newgrid.Data = grid.Data
return newgrid
@@ -59,7 +139,7 @@ func (grid *Grid) Copy(other *Grid) {
func (grid *Grid) Clear() {
for y := range grid.Data {
for x := range grid.Data[y] {
grid.Data[y][x] = false
grid.Data[y][x] = 0
}
}
}
@@ -69,8 +149,8 @@ func (grid *Grid) FillRandom() {
if !grid.Empty {
for y := range grid.Data {
for x := range grid.Data[y] {
if rand.Intn(grid.Density) == 1 {
grid.Data[y][x] = true
if rand.Intn(grid.Config.Density) == 1 {
grid.Data[y][x] = 1
}
}
}
@@ -78,9 +158,9 @@ func (grid *Grid) FillRandom() {
}
func (grid *Grid) Dump() {
for y := 0; y < grid.Height; y++ {
for x := 0; x < grid.Width; x++ {
if grid.Data[y][x] {
for y := 0; y < grid.Config.Height; y++ {
for x := 0; x < grid.Config.Width; x++ {
if grid.Data[y][x] == 1 {
fmt.Print("XX")
} else {
fmt.Print(" ")
@@ -93,8 +173,8 @@ func (grid *Grid) Dump() {
// initialize using a given RLE pattern
func (grid *Grid) LoadRLE(pattern *rle.RLE) {
if pattern != nil {
startX := (grid.Width / 2) - (pattern.Width / 2)
startY := (grid.Height / 2) - (pattern.Height / 2)
startX := (grid.Config.Width / 2) - (pattern.Width / 2)
startY := (grid.Config.Height / 2) - (pattern.Height / 2)
var y, x int
for rowIndex, patternRow := range pattern.Pattern {
@@ -103,7 +183,7 @@ func (grid *Grid) LoadRLE(pattern *rle.RLE) {
x = colIndex + startX
y = rowIndex + startY
grid.Data[y][x] = true
grid.Data[y][x] = 1
}
}
}
@@ -214,7 +294,7 @@ func (grid *Grid) SaveState(filename, rule string) error {
for y := range grid.Data {
for _, cell := range grid.Data[y] {
row := "."
if cell {
if cell == 1 {
row = "o"
}

View File

@@ -4,6 +4,7 @@ import (
"fmt"
"image"
"log"
"sync"
"unsafe"
"github.com/hajimehoshi/ebiten/v2"
@@ -21,6 +22,21 @@ const (
DEBUG_FORMAT = "FPS: %0.2f, TPG: %d, M: %0.2fMB, Generations: %d\nScale: %.02f, Zoom: %d, Cam: %.02f,%.02f Cursor: %d,%d %s"
)
type History struct {
Age [][]int64
}
func NewHistory(height, width int) History {
hist := History{}
hist.Age = make([][]int64, height)
for y := 0; y < height; y++ {
hist.Age[y] = make([]int64, width)
}
return hist
}
type ScenePlay struct {
Game *Game
Config *Config
@@ -31,7 +47,7 @@ type ScenePlay struct {
Clear bool
Grids []*Grid // 2 grids: one current, one next
History [][]int64 // holds state of past dead cells for evolution traces
History History // holds state of past dead cells for evolution traces
Index int // points to current grid
Generations int64 // Stats
TicksElapsed int // tick counter for game speed
@@ -46,6 +62,7 @@ type ScenePlay struct {
RunOneStep bool // mutable flags from config
TPG int // current game speed (ticks per game)
Theme Theme
RuleCheckFunc func(uint8, uint8) uint8
}
func NewPlayScene(game *Game, config *Config) Scene {
@@ -83,18 +100,38 @@ func (scene *ScenePlay) SetNext(next SceneName) {
scene.Next = next
}
func (scene *ScenePlay) CheckRule(state bool, neighbors int) bool {
var nextstate bool
/* The standard Scene of Life is symbolized in rule-string notation
* as B3/S23 (23/3 here). A cell is born if it has exactly three
* neighbors, survives if it has two or three living neighbors,
* and dies otherwise.
* we abbreviate the calculation: if state is 0 and 3 neighbors
* are a life, check will be just 3. If the cell is alive, 9 will
* be added to the life neighbors (to avoid a collision with the
* result 3), which will be 11|12 in case of 2|3 life neighbors.
*/
func (scene *ScenePlay) CheckRuleB3S23(state uint8, neighbors uint8) uint8 {
switch (9 * state) + neighbors {
case 11:
fallthrough
case 12:
fallthrough
case 3:
return Alive
}
// The standard Scene of Life is symbolized in rule-string notation
// as B3/S23 (23/3 here). A cell is born if it has exactly three
// neighbors, survives if it has two or three living neighbors,
// and dies otherwise. The first number, or list of numbers, is
// what is required for a dead cell to be born.
return Dead
}
if !state && Contains(scene.Config.Rule.Birth, neighbors) {
/*
* The generic rule checker is able to calculate cell state for any
* GOL rul, including B3/S23.
*/
func (scene *ScenePlay) CheckRuleGeneric(state uint8, neighbors uint8) uint8 {
var nextstate uint8
if state != 1 && Contains(scene.Config.Rule.Birth, neighbors) {
nextstate = Alive
} else if state && Contains(scene.Config.Rule.Death, neighbors) {
} else if state == 1 && Contains(scene.Config.Rule.Death, neighbors) {
nextstate = Alive
} else {
nextstate = Dead
@@ -116,33 +153,40 @@ func (scene *ScenePlay) UpdateCells() {
// next grid index, we just xor 0|1 to 1|0
next := scene.Index ^ 1
var wg sync.WaitGroup
wg.Add(scene.Config.Height)
// compute life status of cells
for y := 0; y < scene.Config.Height; y++ {
for x := 0; x < scene.Config.Width; x++ {
state := scene.Grids[scene.Index].Data[y][x] // 0|1 == dead or alive
neighbors := scene.CountNeighbors(x, y) // alive neighbor count
// actually apply the current rules
nextstate := scene.CheckRule(state, neighbors)
go func() {
defer wg.Done()
// change state of current cell in next grid
scene.Grids[next].Data[y][x] = nextstate
for x := 0; x < scene.Config.Width; x++ {
state := scene.Grids[scene.Index].Data[y][x] // 0|1 == dead or alive
neighbors := scene.Grids[scene.Index].CountNeighbors(x, y)
if scene.Config.ShowEvolution {
// set history to current generation so we can infer the
// age of the cell's state during rendering and use it to
// deduce the color to use if evolution tracing is enabled
// 60FPS:
if state != nextstate {
scene.History[y][x] = scene.Generations
// actually apply the current rules
nextstate := scene.RuleCheckFunc(state, neighbors)
// change state of current cell in next grid
scene.Grids[next].Data[y][x] = nextstate
if scene.Config.ShowEvolution {
// set history to current generation so we can infer the
// age of the cell's state during rendering and use it to
// deduce the color to use if evolution tracing is enabled
// 60FPS:
if state != nextstate {
scene.History.Age[y][x] = scene.Generations
}
}
// 10FPS:
//scene.History.Data[y][x] = (state ^ (1 ^ nextstate)) * (scene.Generations - scene.History.Data[y][x])
}
}
}()
}
wg.Wait()
// switch grid for rendering
scene.Index ^= 1
@@ -221,10 +265,8 @@ func (scene *ScenePlay) CheckInput() {
func (scene *ScenePlay) CheckDrawingInput() {
if scene.Config.Drawmode {
switch {
case ebiten.IsMouseButtonPressed(ebiten.MouseButtonLeft):
scene.ToggleCellOnCursorPos(Alive)
case ebiten.IsMouseButtonPressed(ebiten.MouseButtonRight):
scene.ToggleCellOnCursorPos(Dead)
case inpututil.IsMouseButtonJustPressed(ebiten.MouseButtonLeft):
scene.ToggleCellOnCursorPos()
case inpututil.IsKeyJustPressed(ebiten.KeyEscape):
scene.Config.Drawmode = false
}
@@ -370,10 +412,10 @@ func (scene *ScenePlay) SaveRectRLE() {
height = scene.Mark.Y - scene.Point.Y
}
grid := make([][]bool, height)
grid := make([][]uint8, height)
for y := 0; y < height; y++ {
grid[y] = make([]bool, width)
grid[y] = make([]uint8, width)
for x := 0; x < width; x++ {
grid[y][x] = scene.Grids[scene.Index].Data[y+starty][x+startx]
@@ -422,15 +464,15 @@ func (scene *ScenePlay) Update() error {
}
// set a cell to alive or dead
func (scene *ScenePlay) ToggleCellOnCursorPos(alive bool) {
func (scene *ScenePlay) ToggleCellOnCursorPos() {
// use cursor pos relative to the world
worldX, worldY := scene.Camera.ScreenToWorld(ebiten.CursorPosition())
x := int(worldX) / scene.Config.Cellsize
y := int(worldY) / scene.Config.Cellsize
if x > -1 && y > -1 && x < scene.Config.Width && y < scene.Config.Height {
scene.Grids[scene.Index].Data[y][x] = alive
scene.History[y][x] = 1
scene.Grids[scene.Index].Data[y][x] ^= 1
scene.History.Age[y][x] = 1
}
}
@@ -455,7 +497,7 @@ func (scene *ScenePlay) Draw(screen *ebiten.Image) {
if scene.Config.ShowEvolution {
scene.DrawEvolution(screen, x, y, op)
} else {
if scene.Grids[scene.Index].Data[y][x] {
if scene.Grids[scene.Index].Data[y][x] == 1 {
scene.World.DrawImage(scene.Theme.Tile(ColLife), op)
}
}
@@ -470,7 +512,7 @@ func (scene *ScenePlay) Draw(screen *ebiten.Image) {
}
func (scene *ScenePlay) DrawEvolution(screen *ebiten.Image, x, y int, op *ebiten.DrawImageOptions) {
age := scene.Generations - scene.History[y][x]
age := scene.Generations - scene.History.Age[y][x]
switch scene.Grids[scene.Index].Data[y][x] {
case Alive:
@@ -481,7 +523,7 @@ func (scene *ScenePlay) DrawEvolution(screen *ebiten.Image, x, y int, op *ebiten
}
case Dead:
// only draw dead cells in case evolution trace is enabled
if scene.History[y][x] > 1 && scene.Config.ShowEvolution {
if scene.History.Age[y][x] > 1 && scene.Config.ShowEvolution {
switch {
case age < 10:
scene.World.DrawImage(scene.Theme.Tile(ColAge1), op)
@@ -553,17 +595,24 @@ func (scene *ScenePlay) DrawDebug(screen *ebiten.Image) {
// load a pre-computed pattern from RLE file
func (scene *ScenePlay) InitPattern() {
scene.Grids[0].LoadRLE(scene.Config.RLE)
// rule might have changed
scene.InitRuleCheckFunc()
}
// pre-render offscreen cache image
func (scene *ScenePlay) InitCache() {
// setup theme
scene.Theme.SetGrid(scene.Config.ShowGrid)
if !scene.Config.ShowGrid {
scene.Cache.Fill(scene.Theme.Color(ColDead))
return
}
op := &ebiten.DrawImageOptions{}
if scene.Config.ShowGrid {
scene.Cache.Fill(scene.Theme.Color(ColGrid))
} else {
scene.Cache.Fill(scene.Theme.Color(ColDead))
}
scene.Cache.Fill(scene.Theme.Color(ColGrid))
for y := 0; y < scene.Config.Height; y++ {
for x := 0; x < scene.Config.Width; x++ {
@@ -580,8 +629,8 @@ func (scene *ScenePlay) InitCache() {
// initialize grid[s], either using pre-computed from state or rle file, or random
func (scene *ScenePlay) InitGrid() {
grida := NewGrid(scene.Config.Width, scene.Config.Height, scene.Config.Density, scene.Config.Empty)
gridb := NewGrid(scene.Config.Width, scene.Config.Height, scene.Config.Density, scene.Config.Empty)
grida := NewGrid(scene.Config)
gridb := NewGrid(scene.Config)
// startup is delayed until user has selected options
grida.FillRandom()
@@ -591,10 +640,8 @@ func (scene *ScenePlay) InitGrid() {
gridb,
}
scene.History = make([][]int64, scene.Config.Height)
for y := 0; y < scene.Config.Height; y++ {
scene.History[y] = make([]int64, scene.Config.Width)
}
scene.History = NewHistory(scene.Config.Height, scene.Config.Width)
}
func (scene *ScenePlay) Init() {
@@ -626,6 +673,8 @@ func (scene *ScenePlay) Init() {
scene.InitCache()
if scene.Config.DelayedStart && !scene.Config.Empty {
// do not fill the grid when the main menu comes up first, the
// user decides interactively what to do
scene.Config.Empty = true
scene.InitGrid()
scene.Config.Empty = false
@@ -651,38 +700,10 @@ func bool2int(b bool) int {
return int(*(*byte)(unsafe.Pointer(&b)))
}
// count the living neighbors of a cell
func (scene *ScenePlay) CountNeighbors(x, y int) int {
var sum int
grid := scene.Grids[scene.Index].Data
for nbgX := -1; nbgX < 2; nbgX++ {
for nbgY := -1; nbgY < 2; nbgY++ {
var col, row int
if scene.Config.Wrap {
// In wrap mode we look at all the 8 neighbors surrounding us.
// In case we are on an edge we'll look at the neighbor on the
// other side of the grid, thus wrapping lookahead around
// using the mod() function.
col = (x + nbgX + scene.Config.Width) % scene.Config.Width
row = (y + nbgY + scene.Config.Height) % scene.Config.Height
} else {
// In traditional grid mode the edges are deadly
if x+nbgX < 0 || x+nbgX >= scene.Config.Width || y+nbgY < 0 || y+nbgY >= scene.Config.Height {
continue
}
col = x + nbgX
row = y + nbgY
}
sum += bool2int(grid[row][col])
}
func (scene *ScenePlay) InitRuleCheckFunc() {
if scene.Config.Rule.Definition == "B3/S23" {
scene.RuleCheckFunc = scene.CheckRuleB3S23
} else {
scene.RuleCheckFunc = scene.CheckRuleGeneric
}
// don't count ourselfes though
sum -= bool2int(grid[y][x])
return sum
}

View File

@@ -9,13 +9,13 @@ import (
// a GOL rule
type Rule struct {
Definition string
Birth []int
Death []int
Birth []uint8
Death []uint8
}
// parse one part of a GOL rule into rule slice
func NumbersToList(numbers string) []int {
list := []int{}
func NumbersToList(numbers string) []uint8 {
list := []uint8{}
items := strings.Split(numbers, "")
for _, item := range items {
@@ -24,7 +24,7 @@ func NumbersToList(numbers string) []int {
log.Fatalf("failed to parse game rule part <%s>: %s", numbers, err)
}
list = append(list, num)
list = append(list, uint8(num))
}
return list

View File

@@ -25,9 +25,11 @@ const (
// the colors and the actual tile images here, so that they are
// readily available from play.go
type Theme struct {
Tiles map[int]*ebiten.Image
Colors map[int]color.RGBA
Name string
Tiles map[int]*ebiten.Image
GridTiles map[int]*ebiten.Image
Colors map[int]color.RGBA
Name string
ShowGrid bool
}
type ThemeDef struct {
@@ -84,10 +86,14 @@ func NewTheme(def ThemeDef, cellsize int, name string) Theme {
}
theme.Tiles = make(map[int]*ebiten.Image, 6)
theme.GridTiles = make(map[int]*ebiten.Image, 6)
for cid, col := range theme.Colors {
theme.Tiles[cid] = ebiten.NewImage(cellsize, cellsize)
FillCell(theme.Tiles[cid], cellsize, col)
FillCell(theme.Tiles[cid], cellsize, col, 0)
theme.GridTiles[cid] = ebiten.NewImage(cellsize, cellsize)
FillCell(theme.GridTiles[cid], cellsize, col, 1)
}
return theme
@@ -97,6 +103,10 @@ func NewTheme(def ThemeDef, cellsize int, name string) Theme {
// unknown type is being used, which is ok, since the code is the only
// user anyway
func (theme *Theme) Tile(col int) *ebiten.Image {
if theme.ShowGrid {
return theme.GridTiles[col]
}
return theme.Tiles[col]
}
@@ -104,6 +114,10 @@ func (theme *Theme) Color(col int) color.RGBA {
return theme.Colors[col]
}
func (theme *Theme) SetGrid(showgrid bool) {
theme.ShowGrid = showgrid
}
type ThemeManager struct {
Theme string
Themes map[string]Theme
@@ -152,11 +166,11 @@ func (manager *ThemeManager) SetCurrentTheme(theme string) {
//
// So we don't draw a grid, we just left a grid behind, which saves us
// from a lot of drawing operations.
func FillCell(tile *ebiten.Image, cellsize int, col color.RGBA) {
func FillCell(tile *ebiten.Image, cellsize int, col color.RGBA, x int) {
vector.DrawFilledRect(
tile,
float32(1),
float32(1),
float32(x),
float32(x),
float32(cellsize),
float32(cellsize),
col, false,

2
various-tests/raygol/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
golsky
*.o

View File

@@ -0,0 +1,33 @@
CFLAGS = -Wall -Wextra -Werror -O2 -g
LDFLAGS= -L/usr/local/lib -lraylib -lGL -lm -lpthread -ldl -lrt -lX11 -g
CC = clang
OBJS = main.o game.o grid.o
DST = golsky
PREFIX = /usr/local
UID = root
GID = 0
MAN = udpxd.1
.PHONY: all
all: $(DST)
$(DST): $(OBJS)
$(CC) $(OBJS) $(LDFLAGS) -o $(DST)
%.o: %.c
$(CC) -c $(CFLAGS) $*.c -o $*.o
.PHONY: clean
clean:
rm -f *.o $(DST)
.PHONY: install
install: $(DST)
install -d -o $(UID) -g $(GID) $(PREFIX)/sbin
install -d -o $(UID) -g $(GID) $(PREFIX)/man/man1
install -o $(UID) -g $(GID) -m 555 $(DST) $(PREFIX)/sbin/
install -o $(UID) -g $(GID) -m 444 $(MAN) $(PREFIX)/man/man1/
.PHONY: run
run:
LD_LIBRARY_PATH=/usr/local/lib ./golsky

View File

@@ -0,0 +1,48 @@
#include "game.h"
#include <stdio.h>
Game *Init(int width, int height, int gridwidth, int gridheight, int density) {
struct Game *game = malloc(sizeof(struct Game));
game->ScreenWidth = width;
game->ScreenHeight = height;
game->Cellsize = width / gridwidth;
game->Width = gridwidth;
game->Height = gridheight;
InitWindow(width, height, "golsky");
SetTargetFPS(60);
game->Grid = NewGrid(gridwidth, gridheight, density);
return game;
}
void Update(Game *game) {
if (IsKeyDown(KEY_Q)) {
game->Done = true;
exit(0);
}
}
void Draw(Game *game) {
BeginDrawing();
ClearBackground(RAYWHITE);
for (int y = 0; y < game->Width; y++) {
for (int x = 0; x < game->Height; x++) {
if (game->Grid->Data[y][x] == 1) {
DrawRectangle(x * game->Cellsize, y * game->Cellsize, game->Cellsize,
game->Cellsize, GREEN);
} else {
DrawRectangle(x * game->Cellsize, y * game->Cellsize, game->Cellsize,
game->Cellsize, RAYWHITE);
}
}
}
DrawText("TEST", game->ScreenWidth / 2, 10, 20, RED);
EndDrawing();
}

View File

@@ -0,0 +1,25 @@
#ifndef _HAVE_GAME_H
#define _HAVE_GAME_H
#include "grid.h"
#include "raylib.h"
#include <stdlib.h>
typedef struct Game {
// Camera2D Camera;
int ScreenWidth;
int ScreenHeight;
int Cellsize;
// Grid dimensions
int Width;
int Height;
bool Done;
Grid *Grid;
} Game;
Game *Init(int width, int height, int gridwidth, int gridheight, int density);
void Update(Game *game);
void Draw(Game *game);
#endif

View File

@@ -0,0 +1,28 @@
#include "grid.h"
Grid *NewGrid(int width, int height, int density) {
Grid *grid = malloc(sizeof(struct Grid));
grid->Width = width;
grid->Height = height;
grid->Density = density;
grid->Data = malloc(height * sizeof(int *));
for (int y = 0; y < grid->Height; y++) {
grid->Data[y] = malloc(width * sizeof(int *));
}
FillRandom(grid);
return grid;
}
void FillRandom(Grid *grid) {
int r;
for (int y = 0; y < grid->Width; y++) {
for (int x = 0; x < grid->Height; x++) {
r = GetRandomValue(0, grid->Density);
if (r == 1)
grid->Data[y][x] = r;
}
}
}

View File

@@ -0,0 +1,18 @@
#ifndef _HAVE_GRID_H
#define _HAVE_GRID_H
#include "raylib.h"
#include <stdio.h>
#include <stdlib.h>
typedef struct Grid {
int Width;
int Height;
int Density;
int **Data;
} Grid;
Grid *NewGrid(int width, int height, int density);
void FillRandom(Grid *grid);
#endif

View File

@@ -0,0 +1,15 @@
#include "game.h"
#include "raylib.h"
int main(void) {
Game *game = Init(800, 800, 10, 10, 8);
while (!WindowShouldClose()) {
Update(game);
Draw(game);
}
CloseWindow();
free(game);
return 0;
}