formatting

This commit is contained in:
TLINDEN
2015-09-01 22:57:35 +02:00
parent 71ec0f780f
commit 8fe9f9553d

232
README.md
View File

@@ -7,7 +7,7 @@ Published under the public domain, Creative Commons Zero License. It works bytew
with keys between 1-256 bits in 17 rounds, uses S-Boxes and key output-feedback mode.
The cipher also works with CBC or ECB mode (sample CBC implementation included).
The name TWENTY4 is a reverence to article 20 paragraph 4 of the german constitution
The name TWENTY4 is a reference to article 20 paragraph 4 of the german constitution
which reads:
> All Germans shall have the right to resist any person seeking to
@@ -33,9 +33,9 @@ published in the Federal Law Gazette Part III, classification number
Linux Shell commands to generate the S-Boxes:
curl -o BJNR000010949.epub http://www.gesetze-im-internet.de/gg/BJNR000010949.epub
echo grundgesetz > BJNR000010949.pass
cat BJNR000010949.epub | openssl aes-256-cbc -kfile BJNR000010949.pass | ./gen-static-sbox
curl -o BJNR000010949.epub http://www.gesetze-im-internet.de/gg/BJNR000010949.epub
echo grundgesetz > BJNR000010949.pass
cat BJNR000010949.epub | openssl aes-256-cbc -kfile BJNR000010949.pass | ./gen-static-sbox
'gen-static-sbox' compiled from gen-static-sbox.c in this directory, which has SHA256
checksum: 29bfd8bd6dbca696d4d8b7ca997497e091875d6bf939e9702b1edf669d0742b0.
@@ -45,10 +45,10 @@ byte array, ignoring possible duplicates, and prints it out as hex.
Both S-Boxes are bijective and have the following properties (calculated using analyze.c):
Char distribution: 100.000000%
Char redundancy: 0.000000%
Char entropy: 8.000000 bits/char
Compression rate: 0.000000%
Char distribution: 100.000000%
Char redundancy: 0.000000%
Char entropy: 8.000000 bits/char
Compression rate: 0.000000%
TWENTY4 uses two S-Box arrays, one for key expansion and one for encryption.
@@ -57,61 +57,61 @@ TWENTY4 uses two S-Box arrays, one for key expansion and one for encryption.
The input key will be expanded into a 17 byte array. Maximum key size is
17 bytes (136 bit).
IV = KU[0]
for ROUND in 0..16
if KU[ROUND]
K[ROUND] = IV xor KU[ROUND]
else
K[ROUND] = IV yor KBOX[ROUND * 8];
endif
K[ROUND] = KBOX[K[ROUND]]
IV = K[ROUND]
endfor
for KROUND in 0..31
for ROUND in 0..17
K[ROUND] = IV xor (rotateleft-3(K[ROUND]) xor KBOX[rcon(IV)])
IV = K[ROUND]
endfor
endfor
IV = KU[0]
for ROUND in 0..16
if KU[ROUND]
K[ROUND] = IV xor KU[ROUND]
else
K[ROUND] = IV yor KBOX[ROUND * 8];
endif
K[ROUND] = KBOX[K[ROUND]]
IV = K[ROUND]
endfor
for KROUND in 0..31
for ROUND in 0..17
K[ROUND] = IV xor (rotateleft-3(K[ROUND]) xor KBOX[rcon(IV)])
IV = K[ROUND]
endfor
endfor
where:
KU: input key
K[17]: initial round key array
ROUND: encryption round 1-17
KROUND: key expansion round 1-32
KBOX[256]: pre computed S-Box for key expansion
KU: input key
K[17]: initial round key array
ROUND: encryption round 1-17
KROUND: key expansion round 1-32
KBOX[256]: pre computed S-Box for key expansion
## Encryption
for INBYTE in <INSTREAM>
OUTBYTE = INBYTE
for ROUND in 0..17
OUTBYTE = OUTBYTE xor K[ROUND]
OUTBYTE = OUTBYTE xor SBOX[OUTBYTE]
OUTBYTE = rotateleft-ROUND%8(OUTBYTE)
OUTBYTE = rotateright-4(K[ROUND])
endfor
rotatekey(K, OUTBYTE)
OUTBYTE => <OUTSTREAM>
endfor
func rotatekey(K, B)
[rotate K[17] array elementy 1 to the right]
for N in 0..16:
K[N] = KBOX[K[N] xor B]
endfor
endfunc
for INBYTE in <INSTREAM>
OUTBYTE = INBYTE
for ROUND in 0..17
OUTBYTE = OUTBYTE xor K[ROUND]
OUTBYTE = OUTBYTE xor SBOX[OUTBYTE]
OUTBYTE = rotateleft-ROUND%8(OUTBYTE)
OUTBYTE = rotateright-4(K[ROUND])
endfor
rotatekey(K, OUTBYTE)
OUTBYTE => <OUTSTREAM>
endfor
func rotatekey(K, B)
[rotate K[17] array elementy 1 to the right]
for N in 0..16:
K[N] = KBOX[K[N] xor B]
endfor
endfunc
where:
K[17]: expanded key
ROUND: encryption round 1-17
INBYTE: one input byte
OUTBYTE: encrypted result for output
SBOX[256]: pre computed S-Box for encryption
K[17]: expanded key
ROUND: encryption round 1-17
INBYTE: one input byte
OUTBYTE: encrypted result for output
SBOX[256]: pre computed S-Box for encryption
## Analysis so far
@@ -129,84 +129,84 @@ passphrase.
My own measurement, see analyze.c:
File size: 35147 bytes
Char distribution: 100.000000%
Char redundancy: 0.000000%
Char entropy: 7.995333 bits/char
Compression rate: 0.000000% (35147 => 35168 bytes)
File size: 35147 bytes
Char distribution: 100.000000%
Char redundancy: 0.000000%
Char entropy: 7.995333 bits/char
Compression rate: 0.000000% (35147 => 35168 bytes)
For comparision, AES result:
File size: 35168 bytes
Char distribution: 100.000000%
Char redundancy: 0.000000%
Char entropy: 7.994892 bits/char
Compression rate: 0.000000% (35168 => 35189 bytes)
File size: 35168 bytes
Char distribution: 100.000000%
Char redundancy: 0.000000%
Char entropy: 7.994892 bits/char
Compression rate: 0.000000% (35168 => 35189 bytes)
## Check using ent
(ent from http://www.fourmilab.ch/random/):
Entropy = 7.995333 bits per byte.
Optimum compression would reduce the size
of this 35147 byte file by 0 percent.
Chi square distribution for 35147 samples is 229.98, and randomly
would exceed this value 86.79 percent of the times.
Arithmetic mean value of data bytes is 127.6631 (127.5 = random).
Monte Carlo value for Pi is 3.172955438 (error 1.00 percent).
Serial correlation coefficient is -0.004405 (totally uncorrelated = 0.0).
Entropy = 7.995333 bits per byte.
Optimum compression would reduce the size
of this 35147 byte file by 0 percent.
Chi square distribution for 35147 samples is 229.98, and randomly
would exceed this value 86.79 percent of the times.
Arithmetic mean value of data bytes is 127.6631 (127.5 = random).
Monte Carlo value for Pi is 3.172955438 (error 1.00 percent).
Serial correlation coefficient is -0.004405 (totally uncorrelated = 0.0).
For comparision, AES result:
Entropy = 7.994892 bits per byte.
Optimum compression would reduce the size
of this 35168 byte file by 0 percent.
Chi square distribution for 35168 samples is 250.98, and randomly
would exceed this value 55.94 percent of the times.
Arithmetic mean value of data bytes is 127.8717 (127.5 = random).
Monte Carlo value for Pi is 3.151680601 (error 0.32 percent).
Serial correlation coefficient is 0.002014 (totally uncorrelated = 0.0).
Entropy = 7.994892 bits per byte.
Optimum compression would reduce the size
of this 35168 byte file by 0 percent.
Chi square distribution for 35168 samples is 250.98, and randomly
would exceed this value 55.94 percent of the times.
Arithmetic mean value of data bytes is 127.8717 (127.5 = random).
Monte Carlo value for Pi is 3.151680601 (error 0.32 percent).
Serial correlation coefficient is 0.002014 (totally uncorrelated = 0.0).
## Check using dieharder
I fed the contents of my primary disk into TWENTY4 and its output
into diehard:
dd if=/dev/sda4 of=/dev/stdout | ./stream 1 e | dieharder -a -g 200
#=============================================================================#
# dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
#=============================================================================#
rng_name |rands/second| Seed |
stdin_input_raw| 1.86e+05 |2067533949|
#=============================================================================#
test_name |ntup| tsamples |psamples| p-value |Assessment
#=============================================================================#
diehard_birthdays| 0| 100| 100|0.11286983| PASSED
diehard_operm5| 0| 1000000| 100|0.14228207| PASSED
diehard_rank_32x32| 0| 40000| 100|0.08372938| PASSED
diehard_rank_6x8| 0| 100000| 100|0.47630577| PASSED
diehard_bitstream| 0| 2097152| 100|0.68878582| PASSED
diehard_opso| 0| 2097152| 100|0.36965490| PASSED
diehard_oqso| 0| 2097152| 100|0.85360068| PASSED
diehard_dna| 0| 2097152| 100|0.41389081| PASSED
diehard_count_1s_str| 0| 256000| 100|0.64198483| PASSED
diehard_count_1s_byt| 0| 256000| 100|0.48126427| PASSED
diehard_parking_lot| 0| 12000| 100|0.61281762| PASSED
diehard_2dsphere| 2| 8000| 100|0.98794548| PASSED
diehard_3dsphere| 3| 4000| 100|0.86553337| PASSED
diehard_squeeze| 0| 100000| 100|0.47837267| PASSED
diehard_sums| 0| 100| 100|0.26661852| PASSED
diehard_runs| 0| 100000| 100|0.78455791| PASSED
diehard_runs| 0| 100000| 100|0.56428921| PASSED
diehard_craps| 0| 200000| 100|0.81900152| PASSED
diehard_craps| 0| 200000| 100|0.54592338| PASSED
ctrl-c
dd if=/dev/sda4 of=/dev/stdout | ./stream 1 e | dieharder -a -g 200
#=============================================================================#
# dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
#=============================================================================#
rng_name |rands/second| Seed |
stdin_input_raw| 1.86e+05 |2067533949|
#=============================================================================#
test_name |ntup| tsamples |psamples| p-value |Assessment
#=============================================================================#
diehard_birthdays| 0| 100| 100|0.11286983| PASSED
diehard_operm5| 0| 1000000| 100|0.14228207| PASSED
diehard_rank_32x32| 0| 40000| 100|0.08372938| PASSED
diehard_rank_6x8| 0| 100000| 100|0.47630577| PASSED
diehard_bitstream| 0| 2097152| 100|0.68878582| PASSED
diehard_opso| 0| 2097152| 100|0.36965490| PASSED
diehard_oqso| 0| 2097152| 100|0.85360068| PASSED
diehard_dna| 0| 2097152| 100|0.41389081| PASSED
diehard_count_1s_str| 0| 256000| 100|0.64198483| PASSED
diehard_count_1s_byt| 0| 256000| 100|0.48126427| PASSED
diehard_parking_lot| 0| 12000| 100|0.61281762| PASSED
diehard_2dsphere| 2| 8000| 100|0.98794548| PASSED
diehard_3dsphere| 3| 4000| 100|0.86553337| PASSED
diehard_squeeze| 0| 100000| 100|0.47837267| PASSED
diehard_sums| 0| 100| 100|0.26661852| PASSED
diehard_runs| 0| 100000| 100|0.78455791| PASSED
diehard_runs| 0| 100000| 100|0.56428921| PASSED
diehard_craps| 0| 200000| 100|0.81900152| PASSED
diehard_craps| 0| 200000| 100|0.54592338| PASSED
ctrl-c
(FIXME: I aborted here, I'll repeat that one later)